[go: up one dir, main page]

login
Search: a059285 -id:a059285
     Sort: relevance | references | number | modified | created      Format: long | short | data
Hilbert's Hamiltonian walk on N X N projected onto x axis: m(3).
+0
19
0, 0, 1, 1, 2, 3, 3, 2, 2, 3, 3, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 3, 4, 5, 5, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 5, 4, 4, 5, 5, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 14, 14, 15, 15, 14
OFFSET
0,5
COMMENTS
This is the X-coordinate of the n-th term in Hilbert's Hamiltonian walk A163359 and the Y-coordinate of its transpose A163357.
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), section 1.31.1 "The Hilbert curve", page 85, lin2hilbert.
Michael Beeler, R. William Gosper, and Richard Schroeppel, HAKMEM, MIT Artificial Intelligence Laboratory report AIM-239, February 1972. Item 115 by Gosper, page 52. Also HTML transcription. (To use algorithm S or the state table, pad n with high 0-bits to a multiple of 4 bits.)
FORMULA
Initially [m(0) = 0, m'(0) = 0]; recursion: m(2n + 1) = m(2n).m'(2n).f(m'(2n), 2n).c(m(2n), 2n + 1); m'(2n + 1) = m'(2n).f(m(2n), 2n).f(m(2n), 2n).mir(m'(2n)); m(2n) = m(2n - 1).f(m'(2n - 1), 2n - 1).f(m'(2n - 1), 2n - 1).mir(m(2n - 1)); m'(2n) = m'(2n - 1).m(2n - 1).f(m(2n - 1), 2n - 1).c(m'(2n - 1), 2n); where f(m, n) is the alphabetic morphism i := i + 2^n [example: f(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 2) = 4 4 5 5 6 7 7 6 6 7 7 6 5 5 4 4]; c(m, n) is the complementation to 2^n - 1 alphabetic morphism [example: c(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 3) = 7 7 6 6 5 4 4 5 5 4 4 5 6 6 7 7]; and mir(m) is the mirror operator [example: mir(0 1 1 0 0 0 1 1 2 2 3 3 3 2 2 3) = 3 2 2 3 3 3 2 2 1 1 0 0 0 1 1 0].
a(n) = A002262(A163358(n)) = A025581(A163360(n)) = A059906(A163356(n)).
EXAMPLE
[m(1)=0 0 1 1, m'(1)= 0 1 10] [m(2) =0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, m'(2)=0 1 1 0 0 0 1 1 2 2 3 3 3 2 2 3].
PROG
(C) void h(unsigned int *x, unsigned int *y, unsigned int l){
x[0] = y[0] = 0; unsigned int *t = NULL; unsigned int n = 0, k = 0;
for(unsigned int i = 1; i<l; i++){
switch(i>>(2*n)){
case 1: x[i] = y[i&k]; y[i] = x[i&k]+(1<<n); break;
case 2: x[i] = y[i&k]+(1<<n); y[i] = x[i&k]+(1<<n); break;
case 3: x[i] = (2<<n)-1-x[i&k]; y[i] = y[k-i&k]; break;
case 4: n++; k = (1<<(2*n))-1; t=x; x=y; y=t; x[i] = 0; y[i] = 1<<n; break;
default:; }}} /* Jared Rager, Jan 09 2021 */
(C++) See Fxtbook link.
CROSSREFS
See also the y-projection, m'(3), A059253, as well as: A163539, A163540, A163542, A059261, A059285, A163547 and A163529.
KEYWORD
nonn
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 23 2001
EXTENSIONS
Extended by Antti Karttunen, Aug 01 2009
STATUS
approved
Hilbert's Hamiltonian walk on N X N projected onto y axis: m'(3).
+0
19
0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 6, 6, 7, 7, 6, 5, 5, 4, 4, 4, 4, 5, 5, 6, 7, 7, 6, 6, 7, 7, 6, 5, 5, 4, 4, 3, 2, 2, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 3, 3, 2, 2, 3, 3, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 3, 4, 5, 5, 4, 4, 4
OFFSET
0,9
COMMENTS
This is the Y-coordinate of the n-th term in the type I Hilbert's Hamiltonian walk A163359 and the X-coordinate of its transpose A163357.
FORMULA
Initially [m(0) = 0, m'(0) = 0]; recursion: m(2n + 1) = m(2n).m'(2n).f(m'(2n), 2n).c(m(2n), 2n + 1); m'(2n + 1) = m'(2n).f(m(2n), 2n).f(m(2n), 2n).mir(m'(2n)); m(2n) = m(2n - 1).f(m'(2n - 1), 2n - 1).f(m'(2n - 1), 2n - 1).mir(m(2n - 1)); m'(2n) = m'(2n - 1).m(2n - 1).f(m(2n - 1), 2n - 1).c(m'(2n - 1), 2n); where f(m, n) is the alphabetic morphism i := i + 2^n [example: f(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 2) = 4 4 5 5 6 7 7 6 6 7 7 6 5 5 4 4]; c(m, n) is the complementation to 2^n - 1 alphabetic morphism [example: c(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 3) = 7 7 6 6 5 4 4 5 5 4 4 5 6 6 7 7]; and mir(m) is the mirror operator [example: mir(0 1 1 0 0 0 1 1 2 2 3 3 3 2 2 3) = 3 2 2 3 3 3 2 2 1 1 0 0 0 1 1 0].
a(n) = A025581(A163358(n)) = A002262(A163360(n)) = A059905(A163356(n)).
PROG
(C) See A059252.
CROSSREFS
See also the y-projection, m(3), A059252 as well as A163538, A163540, A163542, A059261, A059285, A163547 and A163528.
KEYWORD
nonn
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 23 2001
EXTENSIONS
Extended by Antti Karttunen, Aug 01 2009
STATUS
approved
Hilbert's Hamiltonian walk on N X N projected onto the first diagonal: M(3) (sum of the sequences A059252 and A059253).
+0
6
0, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 8, 7, 6, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 12, 11, 10, 11, 10, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 12, 11, 10, 11, 12, 13, 14, 13, 14, 15
OFFSET
0,3
COMMENTS
The interest comes from a simplest recursion than the cross-recursion, dependent on parity, governing the projections onto the x and y axis.
LINKS
FORMULA
Initially, M(0)=0; recursion: M(n+1)=M(n).f(M(n), n).f(M(n), n+1).d(M(n), n); -f(m, n) is the alphabetic morphism i := i+2^n; [example: f(0 1 2 1 2 3 4 3 4 5 6 5 4 3 2 3, 2)=4 5 6 5 6 7 8 7 8 9 10 9 8 7 6 7 ] -d(m, n) is the complementation to 2^(n-1)*3-2, alphabetic morphism; [example: d(0 1 2 1 2 3 4 3 4 5 6 5 4 3 2 3, 3)=10 9 8 9 8 7 6 7 6 5 4 5 6 7 8 7] Here is M(3). [M(1)=0.1.2.1, M(2)=0 1 2 1.2 3 4 3.4 5 6 5.4 3 2 3]
CROSSREFS
Cf. the x-projection m(3), A059252 and the y-projection m'(3), A059253. See also: A163530, A059285, A163547.
KEYWORD
nonn
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 24 2001
EXTENSIONS
Extended by Antti Karttunen, Aug 01 2009
STATUS
approved
a(n) = A163528(n)+A163529(n).
+0
5
0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 4, 5, 6, 7, 8, 9, 8, 7, 8, 9, 10, 11, 10, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7, 8, 9, 8, 7, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 10, 11, 12, 13, 14, 15, 14, 13, 14, 15, 16, 17, 18, 19, 18, 17
OFFSET
0,3
LINKS
CROSSREFS
See also: A059261, A059285, A163531.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 01 2009
STATUS
approved
a(n) is the X-coordinate of the n-th point of the space filling curve C defined in Comments section; A341121 gives Y-coordinates.
+0
2
0, 0, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 2, 3, 4, 4, 3, 3, 3, 4, 5, 5, 5, 4, 4, 5, 6, 6, 6, 7, 8, 8, 7, 7, 7, 8, 8, 7, 6, 6, 5, 5, 5, 6, 5, 5, 5, 6, 6, 7, 8, 8, 9, 9, 9, 8, 8, 9, 10, 10, 10, 11, 12, 12, 11, 11, 11, 12, 12, 13
OFFSET
0,4
COMMENTS
We define the family {C_k, k >= 0}, as follows:
- C_0 corresponds to the points (0, 0), (0, 1), (1, 1), (2, 1) and (2, 0), in that order:
+---+---+
| |
+ +
O
- for any k >= 0, C_{k+1} is obtained by arranging 4 copies of C_k as follows:
+ . . . + . . . +
. B . B .
+ . . . + . . .
. B . .A C.A C.
. . --> + . . . + . . . +
.A C. .C . A.
+ . . . + . B.B .
O .A . C.
+ . . . + . . . +
O
- the space filling curve C is the limit of C_{2*k} as k tends to infinity.
The even bisection of the curve M defined in A341018 is similar to C and vice versa.
The third quadrisection of C is similar to the Hilbert Hamiltonian walk H = A059252, A059253.
H is the number of points in the middle of each unit square in Hilbert's subdivisions, whereas here points are at the starting corner of each unit square. This start is either the bottom left or top right corner depending on how many 180-degree rotations have been applied. These rotations are digit 3's of n written in base 4, hence the formula below adding A283316.
LINKS
F. M. Dekking, Recurrent Sets, Advances in Mathematics, vol. 44, no. 1, 1982. See section 4.8.
David Hilbert, Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Mathematische Annalen, volume 38, number 3, 1891, pages 459-460. Also EUDML (link to GDZ).
Rémy Sigrist, Illustration of C_6
FORMULA
a(n) = A341121(n) - A059285(n).
a(n) = A341121(n) iff n belongs to A062880.
a(2*n) = A341018(n).
a(4*n) = 2*A341121(n).
a(16*n) = 4*a(n).
a(n) = A059252(n) + A283316(n+1).
A059253(n) = (a(4*n+2)-1)/2.
EXAMPLE
Points n and their locations X=a(n), Y=A341121(n) begin as follows. n=7 and n=9 are both at X=3,Y=2, and n=11,n=31 both at X=3,Y=4.
| |
4 | 16---17 12--11,31
| | | |
3 | 15---14---13 10
| |
2 | 8---7,9
| |
1 | 1----2----3 6
| | | |
Y=0 | 0 4----5
+--------------------
X=0 1 2 3
PROG
(PARI) See Links section.
CROSSREFS
Cf. A341121 (Y coordinate), A059285 (projection Y-X), A062880 (n on X=Y diagonal).
KEYWORD
nonn
AUTHOR
Kevin Ryde and Rémy Sigrist, Feb 05 2021
STATUS
approved

Search completed in 0.006 seconds