[go: up one dir, main page]

login
Search: a056993 -id:a056993
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that k^(2^13) + 1 is prime (a generalized Fermat prime).
+10
28
1, 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, 241860, 248744, 268032, 270674, 302368, 316970, 326260, 347962, 350830, 397468, 410938, 416010, 424584, 425848, 426338
OFFSET
1,2
PROG
(PARI) is(n)=isprime(n^2^13+1) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 09 2013
EXTENSIONS
Missing terms inserted (from link) by Jeppe Stig Nielsen, Apr 14 2017
STATUS
approved
Numbers n such that n^(2^14) + 1 is prime (a generalized Fermat prime).
+10
27
1, 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, 509622, 528614, 572934, 581424, 638980, 641762, 656210, 698480, 704930, 730352, 795810, 840796, 908086, 975248, 976914, 990908, 1007874, 1037748, 1039970, 1067896, 1082054, 1097352, 1102754, 1132526, 1162996, 1171010, 1177808, 1181388
OFFSET
1,2
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (from PrimeGrid link below; n = 602..4825 from Jeppe Stig Nielsen)
PROG
(PARI) is(n)=isprime(n^2^14+1) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn,hard
AUTHOR
Robert G. Wilson v, Jun 09 2013
STATUS
approved
Numbers n such that n^(2^15) + 1 is prime (a generalized Fermat prime).
+10
27
1, 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, 1074542, 1096382, 1113768, 1161054, 1167528, 1169486, 1171824, 1210354, 1217284, 1277444, 1519380, 1755378, 1909372, 1922592, 1986700, 2034902, 2147196, 2167350
OFFSET
1,2
PROG
(PARI) is(n)=isprime(n^2^15+1) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn,hard
AUTHOR
Robert G. Wilson v, Jun 09 2013
STATUS
approved
Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.
+10
25
3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
OFFSET
1,1
COMMENTS
Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..5000 (terms 1..1500 from Eric Chen)
FORMULA
a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).
EXAMPLE
a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
MAPLE
f:= proc(n) local k;
for k from 2 do if isprime(numtheory:-cyclotomic(n, k)) then return k fi od
end proc:
seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
MATHEMATICA
Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
PROG
(PARI) a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014
KEYWORD
nonn
AUTHOR
Don Reble, Jun 28 2003
STATUS
approved
Numbers b such that b^262144+1 is prime.
+10
23
1, 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, 3547726, 3596074, 3673932, 3853792, 3933508, 4246258, 4489246, 5152128, 5205422, 5828034, 6287774, 6291332, 8521794
OFFSET
1,2
COMMENTS
Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=18.
KEYWORD
nonn,hard
AUTHOR
Felix Fröhlich, Jun 21 2014
EXTENSIONS
a(9), announced in message 92163 in PrimeGrid forum, added by Felix Fröhlich, Feb 17 2016
a(10), a(11) sent by Maximilian Pacher, Jun 27 2016, and a(12) on Aug 24 2016. - N. J. A. Sloane
a(13) from Felix Fröhlich, Nov 27 2016
a(14)-a(17) from Jeppe Stig Nielsen, Sep 06 2017
a(1) = 1 inserted by and more terms from Jeppe Stig Nielsen, Sep 10 2018
a(27)-a(30) from Jeppe Stig Nielsen, Sep 21 2019
STATUS
approved
Numbers b such that b^65536 + 1 is prime.
+10
23
1, 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, 2019300, 2041898, 2056292
OFFSET
1,2
COMMENTS
Base values b yielding a generalized Fermat prime b^(2^k) + 1 for k=16.
First square member of sequence is 3934049284 = (A253854(1))^2. - Jeppe Stig Nielsen, Jun 29 2015
LINKS
Ray Chandler, Table of n, a(n) for n = 1..1604 (2..70 from Felix Fröhlich, 71..425 from Jeppe Stig Nielsen)
J. S. S. Nielsen, Generalized Fermat Primes sorted by base (see table at the bottom of the page)
PrimeGrid, GFN Status by n-Range, Message 89145
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Dec 05 2014
EXTENSIONS
Corrected last term, and extended, by Jeppe Stig Nielsen, Jun 29 2015
New b-file, updated with data from Message 89145 at PrimeGrid forum uploaded and sequence data corrected, by Felix Fröhlich, Jan 03 2016
a(1) = 1 inserted and new b-file by Jeppe Stig Nielsen, Sep 10 2018
STATUS
approved
Numbers k such that k^524288 + 1 is prime.
+10
22
1, 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, 6339004
OFFSET
1,2
COMMENTS
Numbers k such that k^(2^j) + 1 is a generalized Fermat prime for j=19.
1880370 is a member, but its position is not yet known. - Jeppe Stig Nielsen, Jan 24 2018
PrimeGrid has now tested and double checked the necessary candidates to prove that 1880370 is a(6). - Jeppe Stig Nielsen, Feb 20 2018
PROG
(PARI) is(n)=isprime(n^524288+1) \\ Charles R Greathouse IV, Feb 20 2017
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Jun 16 2014
EXTENSIONS
a(6) from Jeppe Stig Nielsen, Feb 20 2018
a(7) from Jeppe Stig Nielsen, Apr 27 2018
a(1) = 1 inserted and a(8) added by Jeppe Stig Nielsen, Sep 10 2018
a(9)-a(12) from Jeppe Stig Nielsen, Sep 21 2019
a(13) from Jeppe Stig Nielsen, Dec 27 2019
a(14) from Ray Chandler, Mar 28 2022
a(15)-a(17) communicated by Jeppe Stig Nielsen, Apr 01 2024
STATUS
approved
Numbers b such that b^131072 + 1 is prime.
+10
22
1, 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, 1955556, 2194180, 2280466, 2639850, 3450080, 3615210, 3814944, 4085818, 4329134, 4893072, 4974408, 5326454, 5400728, 5471814
OFFSET
1,2
COMMENTS
Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=17.
The first member exceeding 10^((10^6-1)/2^17) is known to be 42654182. - Jeppe Stig Nielsen, Jan 30 2016
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..515 (from a massive computation by PrimeGrid).
C. K. Caldwell, 1560730^131072+1, The Largest Known Primes
C. K. Caldwell, Search result %^131072+1.
J. S. S. Nielsen, Generalized Fermat Primes sorted by base (see table at the bottom of the page)
KEYWORD
nonn,hard
AUTHOR
Felix Fröhlich, Jan 17 2015
EXTENSIONS
Missing term a(8) inserted by Jeppe Stig Nielsen, Jul 02 2015
a(13) from Felix Fröhlich, Nov 01 2015
a(14)-a(20) from Jeppe Stig Nielsen, Jan 30 2016
a(21)-a(31) from Jeppe Stig Nielsen, Sep 06 2017
a(1) = 1 inserted by Jeppe Stig Nielsen, Sep 10 2018
STATUS
approved
Numbers k such that k^(2^20) + 1 is prime (a generalized Fermat prime).
+10
21
1, 919444, 1059094, 1951734, 1963736
OFFSET
1,2
KEYWORD
nonn,hard,more
AUTHOR
Jeppe Stig Nielsen, Nov 04 2018
EXTENSIONS
a(4) from Jeppe Stig Nielsen, Aug 31 2022
a(5) from Jeppe Stig Nielsen, Oct 21 2022
STATUS
approved
Generalized Fermat numbers: 6^(2^n) + 1, n >= 0.
+10
13
7, 37, 1297, 1679617, 2821109907457, 7958661109946400884391937, 63340286662973277706162286946811886609896461828097
OFFSET
0,1
COMMENTS
The next term is too large to include.
As for standard Fermat numbers 2^(2^n) + 1, a number (2b)^m + 1 (with b > 1) can only be prime if m is a power of 2. On the other hand, out of the first 13 base-6 Fermat numbers, only the first three are primes.
Either the sequence of (standard) Fermat numbers contains infinitely many composite numbers or the sequence of base-6 Fermat numbers contains infinitely many composite numbers (cf. https://mathoverflow.net/a/404235/1593). - José Hernández, Nov 09 2021
Since all powers of 6 are congruent to 6 (mod 10), all terms of this sequence are congruent to 7 (mod 10). - Daniel Forgues, Jun 22 2011
There are only 5 known Fermat primes of the form 2^(2^n) + 1: {3, 5, 17, 257, 65537}. There are only 2 known base-10 generalized Fermat primes of the form 10^(2^n) + 1: {11, 101}. - Alexander Adamchuk, Mar 17 2007
LINKS
Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.
C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=6).
Wilfrid Keller, GFN06 factoring status.
Eric Weisstein's World of Mathematics, Generalized Fermat Number.
FORMULA
a(0) = 7, a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(n) = 5*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 5*(empty product, i.e., 1)+ 2 = 7 = a(0). This implies that the terms are pairwise coprime. - Daniel Forgues, Jun 20 2011
Sum_{n>=0} 2^n/a(n) = 1/5. - Amiram Eldar, Oct 03 2022
EXAMPLE
a(0) = 6^1+1 = 7 = 5*(1)+2 = 5*(empty product)+2;
a(1) = 6^2+1 = 37 = 5*(7)+2;
a(2) = 6^4+1 = 1297 = 5*(7*37)+2;
a(3) = 6^8+1 = 1679617 = 5*(7*37*1297)+2;
a(4) = 6^16+1 = 2821109907457 = 5*(7*37*1297*1679617)+2;
a(5) = 6^32+1 = 7958661109946400884391937 = 5*(7*37*1297*1679617*2821109907457)+2;
MATHEMATICA
Table[6^2^n + 1, {n, 0, 6}] (* Arkadiusz Wesolowski, Nov 02 2012 *)
PROG
(Magma) [6^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
(PARI) a(n)=6^(2^n)+1 \\ Charles R Greathouse IV, Jun 21 2011
CROSSREFS
Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0).
Cf. A019434 (Fermat primes of the form 2^(2^n) + 1).
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Nov 21 2002
EXTENSIONS
Edited by Daniel Forgues, Jun 22 2011
STATUS
approved

Search completed in 0.018 seconds