[go: up one dir, main page]

login
Search: a056916 -id:a056916
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Product_{k=1..n} lcm(n,k).
+10
4
1, 4, 54, 768, 75000, 466560, 592950960, 5284823040, 1735643790720, 45360000000000, 1035338990313196800, 102980960177356800, 145077660657859734604800, 154452450072526199193600
OFFSET
1,2
COMMENTS
Log(a(n))/n/Log(n) is bounded since n^n < a(n) < n^(2n). It seems that lim n -> infinity Log(a(n))/n/Log(n) exists and = 1.7.... - Benoit Cloitre, Aug 13 2002
FORMULA
a(n) = n!*Product_{ d divides n } d^phi(d). - Vladeta Jovovic, Sep 10 2004
a(n) = n!*n^n/A067911(n)=A000142(n)*A000312(n)/A067911(n). - R. J. Mathar, Apr 03 2007
MAPLE
A071248 := proc(n) mul( lcm(k, n), k=1..n) ; end: for n from 1 to 10 do printf("%d ", A071248(n)) ; od ; # R. J. Mathar, Apr 03 2007
MATHEMATICA
Table[Product[LCM[k, n], {k, n}], {n, 20}] (* Harvey P. Dale, Jun 12 2019 *)
PROG
(PARI) a(n)=prod(k=1, n, lcm(n, k))
CROSSREFS
Product of terms in n-th row of A051173.
KEYWORD
nonn
AUTHOR
Amarnath Murthy, May 21 2002
EXTENSIONS
More terms from Benoit Cloitre, Aug 13 2002
STATUS
approved
Triangular array T; for n>0, row n shows the coefficients of a reduced polynomial having zeros -k/(n+1) for k=1,2,...,n.
+10
2
1, 1, 2, 2, 9, 9, 3, 22, 48, 32, 24, 250, 875, 1250, 625, 10, 137, 675, 1530, 1620, 648, 720, 12348, 79576, 252105, 420175, 352947, 117649, 315, 6534, 52528, 216608, 501760, 659456, 458752, 131072, 4480, 109584, 1063116, 5450004, 16365321
OFFSET
1,3
COMMENTS
For n>0, the zeros of the polynomial represented by row n+1 interlace the zeros of the polynomial for row n; see the Example section.
...
T(n,1): A119619
T(n,n): A056916.
EXAMPLE
First five rows(counting the top row as row 0):
1
1...2.................representing 1+2x
1...9...9.............representing 2+9x+9x^2
3...22..48...32
24...250...875...1250...625
Zeros corresponding to rows 1 to 4:
.................-1/2
............-2/3......-1/3
......-3/4.......-1/2.......-1/4
-4/5........-3/5......-2/5.......-1/5
Interlace property for successive rows illustrated by
1/5 < 1/4 < 2/5 < 1/2 < 3/5 < 3/4 < 4/5.
MATHEMATICA
p[n_, x_] := Product[(n*x + k)/GCD[n, k], {k, 1, n - 1}]
Table[CoefficientList[p[n, x], x], {n, 1, 10}]
TableForm[%] (* A203904 triangle *)
Flatten[%%] (* A203904 sequence *)
CROSSREFS
Cf. A056856, A119619, A056916, A007305/A007306 (Farey fractions).
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 08 2012
STATUS
approved
a(n) = Product_{k=1..n} lcm(n,k) / (k * gcd(n,k)).
+10
0
1, 1, 3, 4, 125, 9, 16807, 1024, 59049, 15625, 2357947691, 5184, 1792160394037, 282475249, 474609375, 17179869184, 2862423051509815793, 3486784401, 5480386857784802185939, 250000000000, 10382917022245341, 5559917313492231481, 39471584120695485887249589623
OFFSET
1,3
FORMULA
a(n) = Product_{d|n} d^(phi(d)-phi(n/d)).
a(n) = n^n / Product_{d|n} d^(2*phi(n/d)).
a(n) = n^(-n) * Product_{d|n} d^(2*phi(d)).
a(n) = n^n / Product_{k=1..n} gcd(n,k)^2.
a(n) = n^(-n) * Product_{k=1..n} lcm(n,k)^2/k^2.
a(n) = A127553(n)/n!.
a(n) = A056916(n)/A067911(n).
a(p) = p^(p-2), where p is a prime.
MATHEMATICA
Table[Product[LCM[n, k]/(k GCD[n, k]), {k, 1, n}], {n, 1, 23}]
Table[Product[d^(EulerPhi[d] - EulerPhi[n/d]), {d, Divisors[n]}], {n, 1, 23}]
PROG
(PARI) a(n) = prod(k=1, n, lcm(n, k)/(k*gcd(n, k))); \\ Michel Marcus, Jul 02 2019
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 01 2019
STATUS
approved

Search completed in 0.004 seconds