[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a056462 -id:a056462
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals: T(n,k) = number of primitive (aperiodic) palindromes of length n using a maximum of k different symbols (n >= 1, k >= 1).
+10
10
1, 2, 0, 3, 0, 0, 4, 0, 2, 0, 5, 0, 6, 2, 0, 6, 0, 12, 6, 6, 0, 7, 0, 20, 12, 24, 4, 0, 8, 0, 30, 20, 60, 18, 14, 0, 9, 0, 42, 30, 120, 48, 78, 12, 0, 10, 0, 56, 42, 210, 100, 252, 72, 28, 0, 11, 0, 72, 56, 336, 180, 620, 240, 234, 24, 0, 12, 0, 90, 72, 504, 294, 1290, 600, 1008, 216, 62
OFFSET
1,2
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
T(n,k) = Sum_{d | n} mu(n/d) * k^(ceiling(d/2)).
EXAMPLE
Table starts:
1 2 3 4 5 6 7 8 9 10 ...
0 0 0 0 0 0 0 0 0 0 ...
0 2 6 12 20 30 42 56 72 90 ...
0 2 6 12 20 30 42 56 72 90 ...
0 6 24 60 120 210 336 504 720 990 ...
0 4 18 48 100 180 294 448 648 900 ...
0 14 78 252 620 1290 2394 4088 6552 9990 ...
0 12 72 240 600 1260 2352 4032 6480 9900 ...
0 28 234 1008 3100 7740 16758 32704 58968 99900 ...
0 24 216 960 3000 7560 16464 32256 58320 99000 ...
...
Row 4 includes palindromes of the form abba but excludes those of the form aaaa, so T(4,k) is k*(k-1).
Row 6 includes palindromes of the forms aabbaa, abbbba, abccba but excludes those of the forms aaaaaa, abaaba, so T(6,k) is 2*k*(k-1) + k*(k-1)*(k-2).
MATHEMATICA
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#]*k^Ceiling[#/2]&]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017 *)
PROG
(PARI)
a(n, k) = sumdiv(n, d, moebius(n/d) * k^(ceil(d/2)));
for(n=1, 10, for(k=1, 10, print1( a(n, k), ", "); ); print(); )
CROSSREFS
Columns 2-6 are A056458, A056459, A056460, A056461, A056462.
Rows 5-10 are A007531(k+1), A045991, A058895, A047928(k-1), A135497, A133754.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 03 2017
STATUS
approved
Number of primitive (aperiodic) palindromes using exactly six different symbols.
+10
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 720, 720, 15120, 15120, 191520, 191520, 1905120, 1905120, 16435440, 16435440, 129230640, 129229920, 953029440, 953028720, 6711344640, 6711329520, 45674188560, 45674173440, 302899156560, 302898965040, 1969147121760, 1969146930240
OFFSET
1,11
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
a(n) = Sum_{d|n} mu(d)*A056457(n/d).
CROSSREFS
Column 6 of A327873.
KEYWORD
nonn
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Sep 29 2019
STATUS
approved
Number of primitive (aperiodic) palindromic structures using a maximum of six different symbols.
+10
4
1, 1, 0, 1, 1, 4, 3, 14, 13, 50, 47, 202, 197, 875, 861, 4105, 4096, 20647, 20593, 109298, 109246, 601476, 601289, 3403126, 3402911, 19628059, 19627188, 114700263, 114699438, 676207627, 676203467, 4010090462, 4010086352, 23874361996, 23874341552, 142508723632
OFFSET
0,6
COMMENTS
Permuting the symbols will not change the structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
a(n) = Sum_{d|n} mu(d)*A056471(n/d) for n > 0.
a(n) = Sum_{k=1..6} A284826(n, k) for n > 0. - Andrew Howroyd, Oct 02 2019
CROSSREFS
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended and terms a(32) and beyond from Andrew Howroyd, Oct 02 2019
STATUS
approved
Number of primitive (period n) periodic palindromes using a maximum of six different symbols.
+10
1
6, 15, 30, 105, 210, 705, 1290, 4410, 7740, 26985, 46650, 162435, 279930, 978465, 1679370, 5874120, 10077690, 35263440, 60466170, 211604295, 362795730, 1269743025, 2176782330, 7618570470, 13060693800
OFFSET
1,1
COMMENTS
Number of aperiodic necklaces with six colors that are the same when turned over and hence have reflectional symmetry but no rotational symmetry. - Herbert Kociemba, Nov 29 2016
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
a(n) = Sum_{d|n} mu(d)*A056488(n/d).
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of necklaces with reflectional symmetry but no rotational symmetry and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)). (End)
EXAMPLE
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
MATHEMATICA
mx=40; gf[x_, k_]:=Sum[ MoebiusMu[n]*Sum[Binomial[k, i]x^(n i), {i, 0, 2}]/( 1-k x^(2n)), {n, mx}]; CoefficientList[Series[gf[x, 6], {x, 0, mx}], x] (* Herbert Kociemba, Nov 29 2016 *)
CROSSREFS
Column 6 of A284856.
Cf. A056462.
KEYWORD
nonn
STATUS
approved

Search completed in 0.006 seconds