[go: up one dir, main page]

login
Search: a056362 -id:a056362
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads.
+10
15
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1
OFFSET
1,8
COMMENTS
Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
T(n, k) = Sum_{d|n} mu(n/d) * A152176(d, k).
EXAMPLE
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 13 11 3 1
0 8 31 33 16 3 1
0 14 80 136 85 27 4 1
0 21 201 478 434 171 37 4 1
0 39 533 1849 2270 1249 338 54 5 1
...
PROG
(PARI) \\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*M[n/d, ])))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
CROSSREFS
Partial row sums include A000046, A056362, A056363, A056364, A056365.
Row sums are A276548.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 09 2017
STATUS
approved
Number of primitive (period n) bracelet structures using exactly three different colored beads.
+10
3
0, 0, 1, 2, 5, 13, 31, 80, 201, 533, 1401, 3822, 10395, 28859, 80201, 225286, 634265, 1796433, 5100325, 14534758, 41513402, 118879249, 341094843, 980661980, 2824223490, 8146897815, 23535345170
OFFSET
1,4
COMMENTS
Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
CROSSREFS
Column 3 of A276543.
Cf. A056304.
KEYWORD
nonn
STATUS
approved
Number of primitive (period n) bracelet structures using exactly four different colored beads.
+10
3
0, 0, 0, 1, 2, 11, 33, 136, 478, 1849, 6845, 26136, 98406, 373977, 1416249, 5380770, 20440250, 77794939, 296384565, 1131009781, 4321964735, 16541268223, 63400061153, 243358777620, 935431121460, 3600520732809
OFFSET
1,5
COMMENTS
Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
FORMULA
CROSSREFS
Column 4 of A276543.
Cf. A056305.
KEYWORD
nonn
STATUS
approved
Number of primitive (period n) n-bead bracelet structures which are not periodic palindromes using a maximum of three different colored beads.
+10
2
0, 0, 1, 1, 4, 9, 26, 66, 183, 488, 1342, 3690, 10220, 28470, 79720, 224230, 633040, 1793727, 5097638, 14528640, 41509364, 118868750, 341098474, 980661510, 2824295364, 8147015352, 23535794889, 68085719208, 197213728060, 571919889400, 1660412355602, 4825573629390
OFFSET
1,5
COMMENTS
Permuting the colors of the beads will not change the structure.
LINKS
FORMULA
a(n) = Sum_{k=1..3} A309784(n, k).
a(n) = A056362(n) - A056514(n).
EXAMPLE
For n <= 5, the structures are the same as in A328038.
For n = 6, the 9 bracelet structures have the patterns: AABABB, ABCCCC, ABBCCC, ABBBCB, ABBCBC, ABBCCB, ABCBBC, AABBCC, AABCBC.
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Oct 24 2019
STATUS
approved

Search completed in 0.005 seconds