[go: up one dir, main page]

login
Search: a055253 -id:a055253
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of digits in 2^n.
+10
24
1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22
OFFSET
0,5
COMMENTS
The sequence consists of the positive integers, each appearing 3 or 4 times. - M. F. Hasler, Oct 08 2016
LINKS
Eric Weisstein's World of Mathematics, Mersenne Number
FORMULA
a(n) = floor(n*log_10(2)) + 1. E.g., a(10)=4 because 2^10 = 1024 and floor(10*log_10(2)) + 1 = 3 + 1 = 4. - Jaap Spies, Dec 11 2003
a(n) = A055642(2^n) = A055642(A000079(n)).
MAPLE
seq(floor(n*ln(2)/ln(10))+1, n=0..100); # Jaap Spies, Dec 11 2003
MATHEMATICA
Table[Length[IntegerDigits[2^n]], {n, 0, 100}] (* T. D. Noe, Feb 11 2013 *)
IntegerLength[2^Range[0, 80]] (* Harvey P. Dale, Jul 28 2017 *)
PROG
(Magma) [#Intseq(2^n): n in [0..100] ]; // Vincenzo Librandi, Jun 23 2015
(PARI) A034887(n)=n*log(2)\log(10)+1 \\ or: { a(n)=#digits(1<<n) }. - M. F. Hasler, Oct 08 2016
(Python)
def a(n): return len(str(1 << n))
print([a(n) for n in range(73)]) # Michael S. Branicky, Dec 23 2022
CROSSREFS
See A125117 for the sequence of first differences.
KEYWORD
nonn,base,easy
STATUS
approved
Number of odd digits in 2^n.
+10
4
1, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 2, 2, 2, 3, 4, 1, 1, 3, 4, 3, 1, 5, 5, 2, 5, 3, 5, 5, 3, 4, 6, 7, 7, 6, 8, 5, 7, 9, 8, 6, 4, 6, 6, 6, 8, 7, 9, 6, 8, 9, 9, 8, 8, 11, 10, 10, 7, 8, 10, 7, 9, 10, 10, 7, 12, 13, 13, 12, 6, 7, 12, 10, 15, 16, 12, 12, 10, 12, 13, 10, 14, 14, 12, 16, 13, 11, 13, 12
OFFSET
0,10
COMMENTS
Related sequence b(n) = Number of digits in 2^n that are at least 5. a(0) = 1, b(0) = 0 and a(n+1) = b(n), as a digit with value 5 of higher in 2^n will generate an odd digit in 2^(n+1). In the Nieuw Archief voor Wiskunde link there is a proof that sum(k>=, b(k)/2^k) = 2/9. - Jaap Spies, Mar 13 2009
REFERENCES
J. Borwein, D. Bailey and R. Girgensohn, Experimentation in mathematics : computational paths to discovery, A. K. Peters, 2004, pp. 14-15.
LINKS
D. Bowman and T. White, Proposers, Problem 6609, A rational sum, Amer. Math. Monthly, 98:3 (1991), 279-281.
Nieuw Archief voor Wiskunde, Problemen/UWC, p174-175, June 2004.
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
FORMULA
Sum(k>=0,a(k)/2^k)=11/9 (for a proof see the comment above). [Corrected by Jaap Spies, Mar 13 2009]
EXAMPLE
2^30 = 1073741824 and 1073741824 contains 5 odd decimal digits hence a(30)=5.
MAPLE
A055254 := proc(val) local i, j, k, n; n := 2^val; j := 0; k := floor(ln(n)/ln(10))+1; for i from 1 to k do if (n mod 10) mod 2 = 1 then j := j+1 fi; n := floor(n/10); od; RETURN(j); end: seq(A055254(n), n=0..110); # Jaap Spies
MATHEMATICA
A055254[N_] := Count[ #, True] & /@ Map[OddQ, IntegerDigits /@ (2^# & /@ Range[N])] (* This generates a table of the number of odd digits in the first N powers of two *) (* Douglas Skinner (skinnerd(AT)comcast.net), Dec 06 2007 *)
Table[Count[IntegerDigits[2^n], _?OddQ], {n, 0, 90}] (* Harvey P. Dale, Mar 25 2015 *)
PROG
(PARI) a(n)=my(d=digits(2^n)%2); sum(i=1, #d, d[i]) \\ Charles R Greathouse IV, Jun 04 2013
(Perl) sub a{my $m; map $m+=1&$_, split //, 1<<pop; $m}
(Python)
def a(n): return sum(1 for d in str(1<<n) if d in "13579")
print([a(n) for n in range(91)]) # Michael S. Branicky, Dec 23 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Asher Auel, May 05 2000
EXTENSIONS
More terms from Jaap Spies, Dec 30 2003
STATUS
approved
Difference between the number of odd and even digits in the decimal expansion of 2^n.
+10
1
1, -1, -1, -1, 0, 0, -2, -1, -1, 1, -2, -4, -2, 0, -1, -1, 1, 2, -4, -4, -1, 1, -1, -5, 2, 2, -4, 1, -3, 1, 0, -4, -2, 2, 3, 3, 1, 4, -2, 2, 5, 3, -1, -5, -2, -2, -2, 1, -1, 3, -4, 0, 2, 2, -1, -1, 5, 2, 2, -4, -3, 1, -5, -1, 0, 0, -6, 3, 5, 5, 2, -10, -8, 2, -3, 7, 9, 0, 0
OFFSET
0,7
COMMENTS
All vanishing entries are a(A272898(k)) = 0, k >= 1. - Wolfdieter Lang, May 24 2016
LINKS
FORMULA
a(n) = A055254(n) - A055253(n) = A196564(2^n) - A196563(2^n). - Indranil Ghosh, Mar 13 2017
EXAMPLE
2^10 = 1024, 2^11 = 2048, 2^12 = 4096, 2^13 = 8192.
So a(10) = 1 - 3 = -2, a(11) = 0 - 4 = -4, a(12) = 1 - 3 = -2, a(13) = 2 - 2 = 0.
MATHEMATICA
Table[Count[#, _?OddQ] - Count[#, _?EvenQ] &@ IntegerDigits[2^n], {n, 0, 100}] (* Michael De Vlieger, May 09 2016 *)
PROG
(Ruby)
def a(n)
str = (2 ** n).to_s
str.size - str.split('').map(&:to_i).select{|i| i % 2 == 0}.size * 2
end
(0..n).each{|i| p a(i)}
(PARI) a(n) = #select(x -> x%2, digits(2^n)) - #select(x -> !(x%2), digits(2^n));
for(n=0, 78, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 13 2017
(Python)
def A272896(n):
....x=y=0
....for i in str(2**n):
........if int(i)%2: x+=1
........else: y+=1
....return x - y # Indranil Ghosh, Mar 13 2017
KEYWORD
sign,base
AUTHOR
Seiichi Manyama, May 09 2016
STATUS
approved
Decimal expansion of Sum_{n>=1} f(2^n)/2^n, where f(n) is the number of even digits in n.
+10
0
1, 0, 3, 1, 6, 0, 6, 3, 8, 6, 4, 4, 5, 0, 9, 6, 1, 2, 2, 5, 1, 5, 4, 7, 7, 3, 5, 4, 1, 8, 7, 1, 3, 0, 3, 1, 0, 3, 9, 0, 2, 2, 6, 4, 1, 5, 2, 9, 2, 6, 9, 4, 0, 7, 0, 9, 5, 7, 6, 7, 3, 2, 4, 1, 2, 1, 1, 1, 0, 7, 2, 8, 3, 9, 2, 1, 4, 0, 7, 8, 9, 1, 6, 0, 5, 5, 6, 1, 7, 2, 3, 7, 5, 1, 1, 2, 0, 6, 8, 2, 4, 0, 0, 2, 5, 5
OFFSET
1,3
COMMENTS
This constant is transcendental. If the number of even digits is replaced with the number of odd digits, then the sum will be 1/9. (Borwein et al. 2004). - Amiram Eldar, Nov 14 2020
REFERENCES
Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, 2004, pp. 14-15.
FORMULA
Equals -1/9 + Sum_{k>=1} (1 + floor(k * log_10(2)))/2^k. - Amiram Eldar, Nov 14 2020
EXAMPLE
1.03160638...
MATHEMATICA
RealDigits[-1/9 + Sum[(1 + Floor[k*Log10[2]])/2^k, {k, 1, 350}], 10,
100][[1]] (* Amiram Eldar, Nov 14 2020 *)
PROG
(PARI) -1/9 + suminf(k=1, (1 + floor(k * log(2)/log(10)))/2^k) \\ Michel Marcus, Nov 14 2020
CROSSREFS
Cf. A055253.
KEYWORD
nonn,cons,base
AUTHOR
Eric W. Weisstein, Jun 30 2004
STATUS
approved

Search completed in 0.008 seconds