[go: up one dir, main page]

login
Search: a055151 -id:a055151
     Sort: relevance | references | number | modified | created      Format: long | short | data
Eigenvector of triangle A055151 of Motzkin polynomial coefficients, where A055151(n,k) = n!/((n-2k)!*k!*(k+1)!) for 0<=k<=[n/2], n>=0.
+20
3
1, 1, 2, 4, 11, 31, 96, 302, 1023, 3607, 13318, 50348, 195361, 772565, 3112630, 12715692, 52648847, 220705119, 937145214, 4028239116, 17522172021, 77071709841, 342583183572, 1537550150766, 6961838925069, 31774593686661
OFFSET
0,3
COMMENTS
Binomial transform is A119021. Inverse binomial transform is A119022.
FORMULA
Eigenvector: a(n) = Sum_{k=0..[n/2]} n!/((n-2k)!*k!*(k+1)!)*a(k), for n>=0, with a(0)=1. G.f. satisfies: A(x) = A(-x/(1-2*x))/(1-2*x)); i.e., 2nd inverse binomial transform equals A(-x). G.f. satisfies: A(x/(1-x))/(1-x)) = A(-x/(1-3*x))/(1-3*x). G.f. of inverse binomial transform: A(x/(1+x))/(1+x)) = B(x^2) where [x^n] B(x) = a(n)*C(2*n,n)/(n+1) = a(n)*A000108(n) and A000108=Catalan.
EXAMPLE
A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 96*x^6 +...
A(x/(1+x))/(1+x) = 1 + x^2 + 2*2*x^4 + 4*5*x^6 + 11*14*x^8 +...
+ a(n)*A000108(n)*x^(2n) +...
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, n!/((n-2*k)!*k!*(k+1)!)*a(k)))}
CROSSREFS
Cf. A055151 (Motzkin polynomials), A119021 (binomial), A119022 (inverse binomial).
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 09 2006
STATUS
approved
Irregular triangle of numbers read by rows: {binomial(n-k, k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials.
+10
89
1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 3, 1, 5, 6, 1, 1, 6, 10, 4, 1, 7, 15, 10, 1, 1, 8, 21, 20, 5, 1, 9, 28, 35, 15, 1, 1, 10, 36, 56, 35, 6, 1, 11, 45, 84, 70, 21, 1, 1, 12, 55, 120, 126, 56, 7, 1, 13, 66, 165, 210, 126, 28, 1, 1, 14, 78, 220, 330, 252, 84, 8, 1, 15, 91, 286, 495, 462
OFFSET
0,6
COMMENTS
T(n,k) is the number of subsets of {1,2,...,n-1} of size k and containing no consecutive integers. Example: T(6,2)=6 because the subsets of size 2 of {1,2,3,4,5} with no consecutive integers are {1,3},{1,4},{1,5},{2,4},{2,5} and {3,5}. Equivalently, T(n,k) is the number of k-matchings of the path graph P_n. - Emeric Deutsch, Dec 10 2003
T(n,k) = number of compositions of n+2 into k+1 parts, all >= 2. Example: T(6,2)=6 because we have (2,2,4),(2,4,2),(4,2,2),(2,3,3),(3,2,3) and (3,3,2). - Emeric Deutsch, Apr 09 2005
Given any recurrence sequence S(k) = x*a(k-1) + a(k-2), starting (1, x, x^2+1, ...); the (k+1)-th term of the series = f(x) in the k-th degree polynomial: (1, (x), (x^2 + 1), (x^3 + 2x), (x^4 + 3x^2 + 1), (x^5 + 4x^3 + 3x), (x^6 + 5x^4 + 6x^2 + 1), ...). Example: let x = 2, then S(k) = 1, 2, 5, 12, 29, 70, 169, ... such that A000129(7) = 169 = f(x), x^6 + 5x^4 + 6x^2 + 1 = (64 + 80 + 24 + 1). - Gary W. Adamson, Apr 16 2008
Row k gives the nonzero coefficients of U(k,x/2) where U is the Chebyshev polynomial of the second kind. For example, row 6 is 1,5,6,1 and U(6,x/2) = x^6 - 5x^4 + 6x^2 - 1. - David Callan, Jul 22 2008
T(n,k) is the number of nodes at level k in the Fibonacci tree f(k-1). The Fibonacci trees f(k) of order k are defined as follows: 1. f(-1) and f(0) each consist of a single node. 2. For k >= 1, to the root of f(k-1), taken as the root of f(k), we attach with a rightmost edge the tree f(k-2). See the Iyer and Reddy references. These trees are not the same as the Fibonacci trees in A180566. Example: T(3,0)=1 and T(3,1)=2 because in f(2) = /\ we have 1 node at level 0 and 2 nodes at level 1. - Emeric Deutsch, Jun 21 2011
Triangle, with zeros omitted, given by (1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
Riordan array (1/(1-x),x^2/(1-x). - Philippe Deléham, Dec 12 2011
This sequence is the elements on the rising diagonals of the Pascal triangle, where the sum of the elements in each rising diagonal represents a Fibonacci number. - Mohammad K. Azarian, Mar 08 2012
If we set F(0;x) = 0, F(1;x) = 1, F(n+1;x) = x*F(n;x) + F(n-1;x), then we obtain the sequence of Vieta-Fibonacci polynomials discussed by Gary W. Adamson above. We note that F(n;x) = (-i)^n * U(n;i*x/2), where U denotes the respective Chebyshev polynomial of the second kind (see David Callan's remark above). Let us fix a,b,f(0),f(1) in C, b is not the zero, and set f(n) = a*f(n-1) + b*f(n-2). Then we deduce the relation: f(n) = b^((n-1)/2) * F(n;a/sqrt(b))*f(1) + b^(n/2) * F(n-1;a/sqrt(b))*f(0), where for a given value of the complex root sqrt(b) we set b^(n/2) = (sqrt(b))^n. Moreover, if b=1 then we get f(n+k) + (-1)^k * f(n-k) = L(k;a)*f(n), for every k=0,1,...,n, and where L(0;a)=2, L(1;a)=a, L(n+1;a)=a*L(n;a) + L(n-1;a) are the Vieta-Lucas polynomials. Let us observe that L(n+2;a) = F(n+2;a) + F(n;a), L(m+n;a) = L(m;a)*F(n;a) + L(m-1;a)*F(n-1;a), which implies also L(n+1;a) = a*F(n;a) + 2*F(n-1;a). Further we have L(n;a) = 2*(-i)^n * T(n;i*x/2), where T(n;x) denotes the n-th Chebyshev polynomial of the first kind. For the proofs, other relations and facts - see Witula-Slota's papers. - Roman Witula, Oct 12 2012
The diagonal sums of this triangle are A000930. - John Molokach, Jul 04 2013
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014
For a mirrored, shifted version showing the relation of these coefficients to the Pascal triangle, Fibonacci, and other number triangles, see A030528. See also A053122 for a relation to Cartan matrices. - Tom Copeland, Nov 04 2014
For a relation to a formulation for a universal Lie Weyl algebra for su(1,1), see page 16 of Durov et al. - Tom Copeland, Nov 29 2014
A reversed, signed and aerated version is given by A049310, related to Chebyshev polynomials. - Tom Copeland, Dec 06 2015
For n >= 3, the n-th row gives the coefficients of the independence polynomial of the (n-2)-path graph P_{n-2}. - Eric W. Weisstein, Apr 07 2017
For n >= 2, the n-th row gives the coefficients of the matching-generating polynomial of the (n-1)-path graph P_{n-1}. - Eric W. Weisstein, Apr 10 2017
Antidiagonals of the Pascal matrix A007318 read bottom to top. These are also the antidiagonals read from top to bottom of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper), which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Reverse is A102426. - Tom Copeland, Jul 02 2018
T(n,k) is the number of Markov equivalence classes with skeleton the path on n+1 nodes having exactly k immoralities. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
T(n, k) = number of compositions of n+1 into n+1-2*k odd parts. For example, T(6,2) = 6 because 7 = 5+1+1 = 3+3+1 = 3+1+3 = 1+1+5 = 1+3+3 = 1+1+5. - Michael Somos, Sep 19 2019
From Gary W. Adamson, Apr 25 2022: (Start)
Alternate rows can be parsed into those with odd integer coefficients to the right of the leftmost 1, and those with even integer coefficients to the right of the leftmost 1. The first set is shown in A054142 and are characteristic polynomials of submatrices of an infinite tridiagonal matrix (A332602) with all -1's in the super and subdiagonals and (1,2,2,2,...) as the main diagonal. For example, the characteristic equation of the 3 X 3 submatrix (1,-1,0; -1,2,-1; 0,-1,2) is x^3 - 5x^2 + 6x - 1. The roots are the Beraha constants B(7,1) = 3.24697...; B(7,2) = 1.55495...; and B(7,3) = 0.198062.... For n X n matrices of this form, the largest eigenvalue is B(2n+1, 1). The 3 X 3 matrix has an eigenvalue of 3.24697... = B(7,1).
Polynomials with even integer coefficients to the right of the leftmost 1 are in A053123 with roots being the even-indexed Beraha constants. The generating Cartan matrices are those with (2,2,2,...) as the main diagonal and -1's as the sub- and superdiagonals. The largest eigenvalue of n X n matrices of this form are B(2n+2,1). For example, the largest eigenvalue of (2,-1,0; -1,2,-1; 0,-1,2) is 3.414... = B(8,1) = a root to x^3 - 6x^2 + 10x - 4. (End)
T(n,k) is the number of edge covers of P_(n+2) with (n-k) edges. For example, T(6,2)=6 because among edges 1, 2, ..., 7 of P_8, we can eliminate any two non-consecutive edges among 2-6. These numbers can be found using the recurrence relation for the edge cover polynomial of P_n, which is E(P_n,x) = xE(P_(n-1),x)+xE(P_(n-2),x) and E(P_1,x)=0, E(P_2,x)=x (ref. Akbari and Oboudi). - Feryal Alayont, Jun 03 2022
T(n,k) is the number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using k dominoes and n-2*k squares. - Michael A. Allen, Dec 28 2022
T(n,k) is the number of positive integer sequences (s(1),s(2),...,s(n-2k)) such that s(i) < s(i+1), s(1) is odd, s(n-2k) <= n, and s(i) and s(i+1) have opposite parity (ref. Donnelly, Dunkum, and McCoy). Example: T(6,0)=1 corresponds to 123456; T(6,1)=5 corresponds to 1234, 1236, 1256, 1456, 3456; T(6,2)=6 corresponds to 12, 14, 16, 34, 36; and T(6,3)=1 corresponds to the empty sequence () with length 0. - Molly W. Dunkum, Jun 27 2023
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 141ff.
C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See p. 117.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 182-183.
LINKS
S. Akbari and M. R. Oboudi, On the edge cover polynomial of a graph, European Journal of Combinatorics, 34 (2013), 297-321.
Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
Michael A. Allen and Kenneth Edwards, On Two Families of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.7.1.
M. Barnabei, F. Bonetti, S. Elizalde, and M. Silimbani, Descent sets on 321-avoiding involutions and hook decompositions of partitions, arXiv preprint arXiv:1401.3011 [math.CO], 2014.
J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 91, 145.
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
Alexandru-Nicolae Dimache, Ghiocel Groza, Marilena Jianu, and Iulian Iancu, Existence and Uniqueness of Solution Represented as Fractional Power Series for the Fractional Advection-Dispersion Equation, Symmetry (2024) Vol. 16, No. 9, Art. No. 1137.
Robert G. Donnelly, Molly W. Dunkum, Murray L. Huber, and Lee Knupp, Sign-alternating Gibonacci polynomials, arXiv:2012.14993 [math.CO], 2020.
Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020.
Robert G. Donnelly, Molly W. Dunkum, and Rachel McCoy, Olry Terquem's forgotten problem, arXiv:2303.05949 [math.HO], 2023.
N. Durov, S. Meljanac, A. Samsarov, and Z. Skoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, arXiv preprint arXiv:math/0604096 [math.RT], 2006.
Larry Ericksen, Primality Testing and Prime Constellations, Šiauliai Mathematical Seminar, Vol. 3 (11), 2008. See p. 72.
E. J. Farrell, An introduction to matching polynomials, J. Comb. Theory B 27 (1) (1979) 75-86, Table 1.
J. L. Gross, T. Mansour, T. W. Tucker, and D. G. L. Wang, Root geometry of polynomial sequences I: Type (0, 1), arXiv preprint arXiv:1501.06107 [math.CO], 2015.
A. Holme, A combinatorial proof of the duality defect conjecture in codimension 2, Discrete Math., 241 (2001), 363-378; see p. 375.
K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009.
Peter Kagey, Ranking and Unranking Restricted Permutations, arXiv:2210.17021 [math.CO], 2022.
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
Franklin H.J. Kenter, and Jephian C.-H. Lin, On the error of a priori sampling: zero forcing sets and propagation time, arXiv:1709.08740 [math.CO], 2017.
Jong Hyun Kim, Hadamard products and tilings, JIS 12 (2009) 09.7.4.
Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1A.
H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 41.
C.-K. Lim and K. S. Lam, The characteristic polynomial of ladder graphs and an annihilating uniqueness theorem, Discr. Math., 151 (1996), 161-167.
Paweł Lorek and Piotr Markowski, Conditional gambler's ruin problem with arbitrary winning and losing probabilities with applications, arXiv:1812.00687 [math.PR], 2018.
R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.1.
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (Table 3).
A. Radhakrishnan, L. Solus, and C. Uhler, Counting Markov equivalence classes for DAG models on trees, Discrete Applied Mathematics 244 (2018): 170-185.
Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, Gapped Binomial Complexities in Sequences, Univ. Liège (Belgium 2023).
Fernando Szechtman, Closed formulae for certain Fermat-Pell equations, arXiv:2107.02696 [math.NT], 2021. See Table p. 4.
Eric Weisstein's World of Mathematics, Independence Polynomial
Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
Eric Weisstein's World of Mathematics, Path Graph
H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 26, ex. 12.
R. Witula and D. Slota, Conjugate sequences in a Fibonacci-Lucas sense and some identities for sums of powers of their elements, Integers: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A08.
R. Witula and D. Slota, On modified Chebyshev polynomials, J. Math. Anal. Appl., 324 (2006), 321-343.
R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
FORMULA
Let F(n, x) be the n-th Fibonacci polynomial in x; the g.f. for F(n, x) is Sum_{n>=0} F(n, x)*y^n = (1 + x*y)/(1 - y - x*y^2). - Paul D. Hanna
T(m, n) = 0 for n != 0 and m <= 1 T(0, 0) = T(1, 0) = 1 T(m, n) = T(m - 1, n) + T(m-2, n-1) for m >= 2 (i.e., like the recurrence for Pascal's triangle A007318, but going up one row as well as left one column for the second summand). E.g., T(7, 2) = 10 = T(6, 2) + T(5, 1) = 6 + 4. - Rob Arthan, Sep 22 2003
G.f. for k-th column: x^(2*k-1)/(1-x)^(k+1).
Identities for the Fibonacci polynomials F(n, x):
F(m+n+1, x) = F(m+1, x)*F(n+1, x) + x*F(m, x)F(n, x).
F(n, x)^2-F(n-1, x)*F(n+1, x) = (-x)^(n-1).
The degree of F(n, x) is floor((n-1)/2) and F(2p, x) = F(p, x) times a polynomial of equal degree which is 1 mod p.
From Roger L. Bagula, Feb 20 2009: (Start)
p(x,n) = Sum_{m=0..floor((n+1)/2)} binomial(n-m+1, m)*x^m;
p(x,n) = p(x, n - 1) + x*p(x, n - 2). (End)
T(n, k) = A102541(2*n+2, 2*k+1) + A102541(2*n+1, 2*k) - A102541(2*n+3, 2*k+1), n >= 0 and 0 <= k <= floor(n/2). - Johannes W. Meijer, Aug 26 2013
G.f.: 1/(1-x-y*x^2) = R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ x*y)*x/((2*k+2+ x*y)*x + 1/R(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
O.g.f. G(x,t) = x/(1-x-tx^2) = x + x^2 + (1+t) x^3 + (1+2t) x^4 + ... has the inverse Ginv(x,t) = -[1+x-sqrt[(1+x)^2 + 4tx^2]]/(2tx) = x - x^2 + (1-t) x^3 + (-1+3t) x^4 + ..., an o.g.f. for the signed Motzkin polynomials of A055151, consistent with A134264 with h_0 = 1, h_1 = -1, h_2 = -t, and h_n = 0 otherwise. - Tom Copeland, Jan 21 2016
O.g.f. H(x,t) = x (1+tx)/ [1-x(1+tx)] = x + (1+t) x^2 + (1+2t) x^3 + ... = -L[Cinv(-tx)/t], where L(x) = x/(1+x) with inverse Linv(x) = x/(1-x) and Cinv(x) = x (1-x) is the inverse of C(x) = (1-sqrt(1-4x))/2, the o.g.f. of the shifted Catalan numbers A000108. Then Hinv(x,t) = -C[t Linv(-x)]/t = [-1 + sqrt(1+4tx/(1+x))]/2t = x - (1+t) x^2 + (1+2t+2t^2) x^3 - (1+3t+6t^2+5t^3) x^4 + ..., which is signed A098474, reverse of A124644. - Tom Copeland, Jan 25 2016
T(n, k) = GegenbauerC(k, (n+1)/2-k, 1). - Peter Luschny, May 10 2016
EXAMPLE
The first few Fibonacci polynomials (defined here by F(0,x) = 0, F(1,x) = 1; F(n+1, x) = F(n, x) + x*F(n-1, x)) are:
0: 0
1: 1
2: 1
3: 1 + x
4: 1 + 2*x
5: 1 + 3*x + x^2
6: (1 + x)*(1 + 3*x)
7: 1 + 5*x + 6*x^2 + x^3
8: (1 + 2*x)*(1 + 4*x + 2*x^2)
9: (1 + x)*(1 + 6*x + 9*x^2 + x^3)
10: (1 + 3*x + x^2 )*(1 + 5*x + 5*x^2)
11: 1 + 9*x + 28*x^2 + 35*x^3 + 15*x^4 + x^5
From Roger L. Bagula, Feb 20 2009: (Start)
1
1
1 1
1 2
1 3 1
1 4 3
1 5 6 1
1 6 10 4
1 7 15 10 1
1 8 21 20 5
1 9 28 35 15 1
1 10 36 56 35 6
1 11 45 84 70 21 1
1 12 55 120 126 56 7 (End)
For n=9 and k=4, T(9,4) = C(5,4) = 5 since there are exactly five size-4 subsets of {1,2,...,8} that contain no consecutive integers, namely, {1,3,5,7}, {1,3,5,8}, {1,3,6,8}, {1,4,6,8}, and {2,4,6,8}. - Dennis P. Walsh, Mar 31 2011
When the rows of the triangle are displayed as centered text, the falling diagonal sums are A005314. The first few terms are row1 = 1 = 1; row2 = 1+1 = 2; row3 = 2+1 = 3; row4 = 1+3+1 = 5; row5 = 1+3+4+1 = 9; row6 = 4+6+5+1 = 16; row7 = 1+10+10+6+1 = 28; row8 = 1+5+20+15+7+1 = 49; row9 = 6+15+35+21+8+1 = 86; row10 = 1+21+35+56+28+9+1 = 151. - John Molokach, Jul 08 2013
In the example, you can see that the n-th row of Pascal's triangle is given by T(n, 0), T(n+1, 1), ..., T(2n-1, n-1), T(2n, n). - Daniel Forgues, Jul 07 2018
MAPLE
a := proc(n) local k; [ seq(binomial(n-k, k), k=0..floor(n/2)) ]; end;
T := proc(n, k): if k<0 or k>floor(n/2) then return(0) fi: binomial(n-k, k) end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..15); # Johannes W. Meijer, Aug 26 2013
MATHEMATICA
(* first: sum method *) Table[CoefficientList[Sum[Binomial[n - m + 1, m]*x^m, {m, 0, Floor[(n + 1)/2]}], x], {n, 0, 12}] (* Roger L. Bagula, Feb 20 2009 *)
(* second: polynomial recursion method *) Clear[L, p, x, n, m]; L[x, 0] = 1; L[x, 1] = 1 + x; L[x_, n_] := L[x, n - 1] + x*L[x, n - 2]; Table[ExpandAll[L[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[L[x, n]], x], {n, 0, 12}]; Flatten[%] (* Roger L. Bagula, Feb 20 2009 *)
(* Center option shows falling diagonals are A224838 *) Column[Table[Binomial[n - m, m], {n, 0, 25}, {m, 0, Floor[n/2]}], Center] (* John Molokach, Jul 26 2013 *)
Table[ Select[ CoefficientList[ Fibonacci[n, x], x], Positive] // Reverse, {n, 1, 18} ] // Flatten (* Jean-François Alcover, Oct 21 2013 *)
CoefficientList[LinearRecurrence[{1, x}, {1 + x, 1 + 2 x}, {-1, 10}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
CoefficientList[Table[x^((n - 1)/2) Fibonacci[n, 1/Sqrt[x]], {n, 15}], x] // Flatten (* Eric W. Weisstein, Apr 07 2017 *)
PROG
(PARI) {T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k))};
(Sage) # Prints the table; cf. A145574.
for n in (2..20): [Compositions(n, length=m, min_part=2).cardinality() for m in (1..n//2)] # Peter Luschny, Oct 18 2012
(Haskell)
a011973 n k = a011973_tabf !! n !! k
a011973_row n = a011973_tabf !! n
a011973_tabf = zipWith (zipWith a007318) a025581_tabl a055087_tabf
-- Reinhard Zumkeller, Jul 14 2015
CROSSREFS
Row sums = A000045(n+1) (Fibonacci numbers). - Michael Somos, Apr 02 1999
All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways.
KEYWORD
tabf,easy,nonn,nice
STATUS
approved
Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.
+10
38
1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
OFFSET
0,5
COMMENTS
Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 16.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Hsien-Kuei Hwang and Satoshi Kuriki, Integrated empirical measures and generalizations of classical goodness-of-fit statistics, arXiv:2404.06040 [math.ST], 2024. See p. 11.
C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
Paul W. Lapey and Aaron Williams, A Shift Gray Code for Fixed-Content Łukasiewicz Words, Williams College, 2022.
A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8.
Jason P. Smith, The poset of graphs ordered by induced containment, arXiv:1806.01821 [math.CO], 2018.
FORMULA
Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022
EXAMPLE
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 3, 2;
[3] 1, 6, 10, 5;
[4] 1, 10, 30, 35, 14;
[5] 1, 15, 70, 140, 126, 42;
[6] 1, 21, 140, 420, 630, 462, 132;
[7] 1, 28, 252, 1050, 2310, 2772, 1716, 429;
[8] 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430;
[9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
MAPLE
R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
MATHEMATICA
Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n, 0, 10}, {k, 0, n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
PROG
(PARI) {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
(Magma) [[Binomial(n+k, n)*Binomial(n, k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
(SageMath) flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Nov 23 2003
STATUS
approved
Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
+10
32
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 15, 104
OFFSET
0,6
COMMENTS
There are several versions of a Catalan triangle: see A009766, A008315, A028364, A053121.
Number of standard tableaux of shape (n-k,k) (0<=k<=floor(n/2)). Example: T(4,1)=3 because in th top row we can have 124, 134, or 123 (but not 234). - Emeric Deutsch, May 23 2004
T(n,k) is the number of n-digit binary words (length n sequences on {0,1}) containing k 1's such that no initial segment of the sequence has more 1's than 0's. - Geoffrey Critzer, Jul 31 2009
T(n,k) is the number of dispersed Dyck paths (i.e. Motzkin paths with no (1,0) steps at positive heights) of length n and having k (1,1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, May 30 2011
T(n,k) is the number of length n left factors of Dyck paths having k (1,-1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), we have UUUUD, UUUDU, UUDUU, and UDUUU. There is a simple bijection between length n left factors of Dyck paths and dispersed Dyck paths of length n, that takes D steps into D steps. - Emeric Deutsch, Jun 19 2011
Triangle, with zeros omitted, given by (1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...) DELTA (0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
T(n,k) are rational multiples of A055151(n,k). - Peter Luschny, Oct 16 2015
T(2*n,n) = Sum_{k>=0} T(n,k)^2 = A000108(n), T(2*n+1,n) = A000108(n+1). - Michael Somos, Jun 08 2020
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
Nantel Bergeron, Kelvin Chan, Yohana Solomon, Farhad Soltani, and Mike Zabrocki, Quasisymmetric harmonics of the exterior algebra, arXiv:2206.02065 [math.CO], 2022.
Chassidy Bozeman, Christine Cheng, Pamela E. Harris, Stephen Lasinis, and Shanise Walker, The Pinnacle Sets of a Graph, arXiv:2406.19562 [math.CO], 2024. See pp. 9-10.
Suyoung Choi and Hanchul Park, A new graph invariant arises in toric topology, arXiv preprint arXiv:1210.3776 [math.AT], 2012.
C. Kenneth Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
L. Jiu, V. H. Moll, and C. Vignat, Identities for generalized Euler polynomials, arXiv:1401.8037 [math.PR], 2014.
N. Lygeros and O. Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.
M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, and C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014 and J. Int. Seq. 18 (2015) 15.10.6.
Alon Regev, The central component of a triangulation, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.1, p. 7.
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
L. W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), no. 1, 83-90. [Annotated scanned copy]
Zheng Shi, Impurity entropy of junctions of multiple quantum wires, arXiv preprint arXiv:1602.00068 [cond-mat.str-el], 2016 (See Appendix A).
FORMULA
T(n, 0) = 1 if n >= 0; T(2*k, k) = T(2*k-1, k-1) if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) if k=1, 2, ..., floor(n/2). - Michael Somos, Aug 17 1999
T(n, k) = binomial(n, k) - binomial(n, k-1). - Michael Somos, Aug 17 1999
Rows of Catalan triangle A008313 read backwards. Sum_{k>=0} T(n, k)^2 = A000108(n); A000108 : Catalan numbers. - Philippe Deléham, Feb 15 2004
T(n,k) = C(n,k)*(n-2*k+1)/(n-k+1). - Geoffrey Critzer, Jul 31 2009
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 12 2011
EXAMPLE
Triangle begins:
1;
1;
1, 1;
1, 2;
1, 3, 2;
1, 4, 5;
1, 5, 9, 5;
1, 6, 14, 14;
1, 7, 20, 28, 14;
...
T(5,2) = 5 because there are 5 such sequences: {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1}, {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}. - Geoffrey Critzer, Jul 31 2009
MAPLE
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
T:= (n, k)-> b(n, n-2*k):
seq(seq(T(n, k), k=0..n/2), n=0..16); # Alois P. Heinz, Oct 14 2022
MATHEMATICA
Table[Binomial[k, i]*(k - 2 i + 1)/(k - i + 1), {k, 0, 20}, {i, 0, Floor[k/2]}] // Grid (* Geoffrey Critzer, Jul 31 2009 *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n\2, 0, if( n==0, 1, T(n-1, k-1) + T(n-1, k)))}; /* Michael Somos, Aug 17 1999 */
(Haskell)
a008315 n k = a008315_tabf !! n !! k
a008315_row n = a008315_tabf !! n
a008315_tabf = map reverse a008313_tabf
-- Reinhard Zumkeller, Nov 14 2013
CROSSREFS
T(2n, n) = A000108 (Catalan numbers), row sums = A001405 (central binomial coefficients).
This is also the positive half of the triangle in A008482. - Michael Somos
This is another reading (by shallow diagonals) of the triangle A009766, i.e. A008315[n] = A009766[A056536[n]].
KEYWORD
nonn,tabf,nice,easy
EXTENSIONS
Expanded description from Clark Kimberling, Jun 15 1997
STATUS
approved
Triangle read by rows: T(n,k) is number of Motzkin paths of length n and having k horizontal steps.
+10
22
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0, 2772, 0
OFFSET
0,8
COMMENTS
Row sums are the Motzkin numbers (A001006). Column 0 gives the aerated Catalan numbers (A000108).
Let P_n(x) = Sum_{k=0..n} T(n,k)*x^k. P_0(x) = 1, P_1(x) = x, P_n(x) = x*P_(n-1)(x) + Sum_{j=0..n-2} P_j(x)*P_(n-2-j)(x); essentially the same as A124027. - Philippe Deléham, Oct 03 2007
G. J. Chaitin's numbers of s-expressions of size n are given by the coefficients of polynomials p(k, x) satisfying: p(k, x) = Sum_{j=2..k-1} p(j, x)*p(k-j, x). The coefficients of these polynomials also give (essentially) the triangle shown here. - Roger L. Bagula, Oct 31 2006
Exponential Riordan array [Bessel_I(1,2x)/x,x]. - Paul Barry, Mar 24 2010
Diagonal sums are the aerated large Schroeder numbers. - Paul Barry, Apr 21 2010
Non-vanishing antidiagonals are rows of A060693. - Tom Copeland, Feb 03 2016
These polynomials are related to the Gegenbauer polynomials which in turn are specializations of the Jacobi polynomials. The o.g.f. of the Gegenbauer polynomials is 1 / [1-2tx+x^2]^a. For the generating function Gb(x,h1,h2,a) = [x / (1 + h1 x + h2 x^2)]^a, the compositional inverse in x is Gbinv(x,h1,h2,a) = [(1-h1*y) - sqrt[(1-h1*y)^2-4h2*y^2]]/(2*h2*y) with y = x^(1/a). The polynomials of this entry are generated by Gbinv(x,t,1,1). The Legendre polynomials are related to the o.g.f. Gb(x,-2t,1,1/2). Cf. A121448. - Tom Copeland, Feb 07 2016
The bivariate o.g.f. in Copeland's Jan 29 2016 formulas can be related to conformal mappings of the complex plane and a solution of the dKP hierarchy. Cf. p. 24 of the Takebe et al. paper. - Tom Copeland, May 30 2018
REFERENCES
G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987, page 169.
LINKS
N. Alexeev, J. Andersen, R. Penner, and P. Zograf, Enumeration of chord diagrams on many intervals and their non-orientable analogs, arXiv:1307.0967 [math.CO], 2013-2014.
M. Artioli, G. Dattoli, S. Licciardi, and S. Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017, (reverse of Table 1 on p. 3).
Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Colin Defant, Postorder Preimages, arXiv preprint arXiv:1604.01723 [math.CO], 2016.
G. Ellingsrud, Elliptic curves--Basics, course notes, Fall 2014.
P. Landweber, D. Ravenel, and R. Stong, Periodic cohomology theories defined by elliptic curves
Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238. - From N. J. A. Sloane, Oct 13 2012
T. Takebe, Lee-Peng Teo, and A. Zabrodin, Löwner equations and dispersionless hierarchies, arXiv:math/0605161 [math.CV], p. 24, 2006.
FORMULA
G.f.: [1-tz-sqrt(1-2tz+t^2*z^2-4z^2)]/(2z^2).
T(n, k) = n!/[k!((n-k)/2)!((n-k)/2-1)! ] = A055151(n, (n-k)/2) if n-k is a nonnegative even number; otherwise T(n, k) = 0.
T(n, k) = C(n, k)*C((n-k)/2)*(1+(-1)^(n-k))/2 if k <= n, 0 otherwise. - Paul Barry, May 18 2005
T(n,k) = A121448(n,k)/2^k. - Philippe Deléham, Aug 17 2006
Sum_{k=0..n} T(n,k)*2^k = A000108(n+1). - Philippe Deléham, Aug 22 2006
Sum_{k=0..n} T(n,k)*3^k = A002212(n+1). - Philippe Deléham, Oct 03 2007
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-x^2/.... (continued fraction). - Paul Barry, Dec 15 2008
Sum_{k=0..n} T(n,k)*4^k = A005572(n). - Philippe Deléham, Dec 03 2009
T(n,k) = A007318(n,k)*A126120(n-k). - Philippe Deléham, Dec 12 2009
From Tom Copeland, Jan 23 2016: (Start)
E.g.f.: M(x,t) = e^(xt) AC(t) = e^(xt) I_1(2t)/t = e(xt) * e.g.f.(A126120(t)) = e^(xt) Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp[t P(.,x)].
The e.g.f. of this Appell sequence of polynomials P(n,x) is e^(xt) times the e.g.f. AC(t) of the aerated Catalan numbers A126120. AC(t) = I_1(2t)/t, where I_n(x) = T_n(d/dx) I_0(x) are the modified Bessel functions of the first kind and T_n, the Chebyshev polynomials of the first kind.
P(n,x) has the lowering and raising operators L = d/dx = D and R = d/dD log{M(x,D)} = x + d/dD log{AC(D)} = x + Sum_{n>=0} c(n) D^(2n+1)/(2n+1)! with c(n) = (-1)^n A180874(n+1), i.e., L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
(P(.,x) + y)^n = P(n,x+y) = Sum_{k=0..n} binomial(n,k) P(k,x) y^(n-k) = (b.+x+y)^n, where (b.)^k = b_k = A126120(k).
Exp(b.D) e^(xt) = exp[(x+b.)t] = exp[P(.,x)t] = e^(b.t) e^(xt) = e^(xt) AC(t).
See p. 12 of the Alexeev et al. link and A055151 for a refinement.
Shifted o.g.f: G(x,t) = [1-tx-sqrt[(1-tx)^2-4x^2]] / 2x = x + t x^2 + (1+t) x^3 + ... has the compositional inverse Ginv(x,t) = x / [1 + tx + x^2] = x - t x^2 +(-1+t^2) x^3 + (2t-t^3) x^4 + (1-3t^2+t^4) x^5 + ..., a shifted o.g.f. for the signed Chebyshev polynomials of the second kind of A049310 (cf. also the Fibonacci polynomials of A011973). Then the inversion formula of A134264, involving non-crossing partitions and free probability with their multitude of interpretations (cf. A125181 also), can be used with h_0 = 1, h_1 = t, and h_2 = 1 to interpret the coefficients of the Motzkin polynomials combinatorially.
(End)
From Tom Copeland, Jan 29 2016: (Start)
Provides coefficients of the inverse of f(x) = x / [1 + h1 x + h2 x^2], a bivariate generating function of A049310 (mod signs).
finv(x) = [(1-h1*x) - sqrt[(1-h1*x)^2-4h2*x^2]]/(2*h2*x) = x + h1 x^2 + (h2 + h1^2) x^3 + (3 h1 h2 + h1^3) x^4 + ... is a bivariate o.g.f. for this entry.
The infinitesimal generator for finv(x) is g(x) d/dx with g(x) = 1 /[df(x)/dx] = x^2 / [(f(x))^2 (1 - h2 x^2)] = (1 + h1 x + h2 x^2)^2 / (1 - h2 x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomials FI(n,h1,h2) of the compositional inverse of f(x), i.e., exp[x g(u)d/du] u |_(u=0) = finv(x) = 1 / [1 -x FI(.,h1,h2)]. Cf. A145271. E.g.,
FI(0,h1,h2) = 0
FI(1,h1,h2) = 1
FI(2,h1,h2) = 1 h1
FI(3,h1,h2) = 1 h2 + 1 h1^2
FI(4,h1,h2) = 3 h2 h1 + 1 h1^3
FI(5,h1,h2) = 2 h2^2 + 6 h2 h1^2 + 1 h1^4
FI(6,h1,h2) = 10 h2^2 h1 + 10 h2 h1^3 + 1 h1^5.
And with D = d/dh1, FI(n+1, h1,h2) = MT(n,h1,h2) = (b.y + h1)^n = Sum_{k=0..n} binomial(n,k) b(k) y^k h1^(n-k) = exp[(b.y D] (h1)^n = AC(y D) (h1)^n, where b(k) = A126120(k), y = sqrt(h2), and AC(t) is defined in my Jan 23 formulas above. Equivalently, AC(y D) e^(x h1) = exp[x MT(.,h1,h2)].
The MT polynomials comprise an Appell sequence in h1 with e.g.f. e^(h1*x) AC(xy) = exp[x MT(.,h1,h2)] with lowering operator L = d/dh1 = D, i.e., L MT(n,h1,h2) = dMT(n,h1,h2)/dh1 = n MT(n-1,h1,h2) and raising operator R = h1 + dlog{AC(y L)}/dL = h1 + Sum_{n>=0} c(n) h2^(n+1) D^(2n+1)/(2n+1)! = h1 + h2 d/dh1 - h2^2 (d/dh1)^3/3! + 5 h2^3 (d/dh1)^5/5! - ... with c(n) = (-1)^n A180874(n+1) (consistent with the raising operator in the Jan 23 formulas).
The compositional inverse finv(x) is also obtained from the non-crossing partitions of A134264 (or A125181) with h_0 = 1, h_1 = h1, h_2 = h2, and h_n = 0 for all other n.
See A238390 for the umbral compositional inverse in h1 of MT(n,h1,h2) and inverse matrix.
(End)
From Tom Copeland, Feb 13 2016: (Start)
z1(x,h1,h2) = finv(x), the bivariate o.g.f. above for this entry, is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,h1,h2),z2(x,h1,h2)) = (z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-h1*x)/(h2*x)] z + 1/h2, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,h1,h2) = (1 - h1*x)/(h2*x) - z1(x,h1,h2) = [1 - h1*x + sqrt[(1-h1*x)^2 - 4 h2*x^2]] / (2h2*x).
The two are the nontrivial zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2), (see Landweber et al., p. 14, Ellingsrud, and A121448), and the zeros for the Riccati equation z' = (z - z1)(z - z2), associated to soliton solutions of the KdV equation (see Copeland link).
(End)
Comparing the shifted o.g.f. S(x) = x / (1 - h_1 x + h_2 x^2) for the bivariate Chebyshev polynomials S_n(h_1,h_2) of A049310 with the shifted o.g.f. H(x) = x / ((1 - a x)(1 - b x)) for the complete homogeneous symmetric polynomials H_n(a,b) = (a^(n+1)-b^(n+1)) / (a - b) shows that S_n(h_1,h_2) = H_n(a,b) for h_1 = a + b and h_2 = ab and, conversely, a = (h_1 + sqrt(h_1^2 - 4 h_2)) / 2 and b = (h_1 - sqrt(h_1^2 - 4 h_2)) / 2. The compositional inverse about the origin of S(x) gives a bivariate o.g.f. for signed Motzkin polynomials M_n(h_1,h_2) of this entry, and that of H(x) gives one for signed Narayana polynomials N_n(a,b) of A001263, thereby relating the bivariate Motzkin and Narayana polynomials by the indeterminate transformations. E.g., M_2(h_1,h_2) = h_2 + h_1^2 = ab + (a + b)^2 = a^2 + 3 ab + b^2 = N_2(a,b). - Tom Copeland, Jan 27 2024
EXAMPLE
Triangle begins:
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
2, 0, 6, 0, 1;
0, 10, 0, 10, 0, 1;
5, 0, 30, 0, 15, 0, 1;
Row n has n+1 terms.
T(4,2)=6 because we have HHUD, HUDH, UDHH, HUHD, UHDH, UHHD, where U=(1,1), D=(1,-1) and H=(1,0).
MAPLE
G:=(1-t*z-sqrt(1-2*t*z+t^2*z^2-4*z^2))/2/z^2:
Gser:=simplify(series(G, z=0, 16)): P[0]:=1:
for n from 1 to 13 do P[n]:=sort(coeff(Gser, z^n)) od:
seq(seq(coeff(t*P[n], t^k), k=1..n+1), n=0..13);
# Maple program for the triangular array:
T:=proc(n, k) if n-k mod 2 = 0 and k<=n then n!/k!/((n-k)/2)!/((n-k)/2+1)! else 0 fi end: TT:=(n, k)->T(n-1, k-1): matrix(10, 10, TT);
MATHEMATICA
T[n_, k_]:=If[n>=k&&EvenQ[n-k], n!/(k!((n-k)/2)!((n-k)/2+1)!), 0];
Flatten[Table[T[n, k], {n, 0, 20}, {k, 0, n}]] (* Peter J. C. Moses, Apr 06 2013 *)
T[n_, k_] := If[OddQ[n - k], 0, Binomial[n, k] CatalanNumber[(n - k)/2]]; (* Peter Luschny, Jun 06 2018 *)
CROSSREFS
Cf. A001006, A000108. A124027 is an essentially identical triangle.
Cf. A001263.
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 30 2004
STATUS
approved
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having k ddu's [here u = (1,1) and d = (1,-1)].
+10
20
1, 1, 2, 4, 1, 8, 6, 16, 24, 2, 32, 80, 20, 64, 240, 120, 5, 128, 672, 560, 70, 256, 1792, 2240, 560, 14, 512, 4608, 8064, 3360, 252, 1024, 11520, 26880, 16800, 2520, 42, 2048, 28160, 84480, 73920, 18480, 924, 4096, 67584, 253440, 295680, 110880, 11088, 132
OFFSET
0,3
COMMENTS
Number of Dyck paths of semilength n, having k uu's with midpoint at even height. Example: T(4,1) = 6 because we have u(uu)duddd, u(uu)udddd, udu(uu)ddd, u(uu)dddud, u(uu)ddudd and uud(uu)ddd [here u = (1,1), d = (1,-1) and the uu's with midpoint at even height are shown between parentheses]. Row sums are the Catalan numbers (A000108). T(2n+1,n) = A000108(n) (the Catalan numbers). Sum_{k>=0} k*T(n,k) = binomial(2n-2,n-3) = A002694(n-1).
Sometimes called the Touchard distribution (after Touchard's Catalan number identity). T(n,k) = number of full binary trees on 2n edges with k deep interior vertices (deep interior means you have to traverse at least 2 edges to reach a leaf) = number of binary trees on n-1 edges with k vertices having a full complement of 2 children. - David Callan, Jul 19 2004
From David Callan, Oct 25 2004: (Start)
T(n,k) = number of ordered trees on n edges with k prolific edges. A prolific edge is one whose child vertex has at least two children. For example with n=3, drawing ordered trees down from the root, /|\ has no prolific edge and the only tree with one prolific edge has the shape of an inverted Y, so T(3,1)=1.
Proof: Consider the following bijection, recorded by Emeric Deutsch, from ordered trees on n edges to Dyck n-paths. For a given ordered tree, traverse the tree in preorder (walk-around from root order). To each node of outdegree r there correspond r upsteps followed by 1 downstep; nothing corresponds to the last leaf. This bijection sends prolific edges to noninitial ascents of length >=2, that is, to DUU's. Then reverse the resulting Dyck n-path so that prolific edges correspond to DDU's. (End)
T(n,k) is the number of Łukasiewicz paths of length n having k fall steps (1,-1) that start at an even level. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: T(3,1) = 1 because we have U(2)(D)D, where U(2) = (1,2), D = (1,-1) and the fall steps that start at an even level are shown between parentheses. Row n contains ceiling(n/2) terms (n >= 1). - Emeric Deutsch, Jan 06 2005
Number of binary trees with n-1 edges and k+1 leaves (a binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child). - Emeric Deutsch, Jul 31 2006
Number of full binary trees with 2n edges and k+1 vertices both children of which are leaves (n >= 1; a full binary tree is a rooted tree in which each vertex has either 0 or two children). - Emeric Deutsch, Dec 26 2006
Number of ordered trees with n edges and k jumps. In the preorder traversal of an ordered tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
It is remarkable that we can generate the coefficients of the right hand columns of triangle A175136 with the aid of the coefficients in the rows of the triangle given above. See A175136 for more information. - Johannes W. Meijer, May 06 2011
The antidiagonal sums equal A152225. - Johannes W. Meijer, Sep 13 2012
This array also counts 231-avoiding permutations according to the number of peaks, i.e., positions w[i-1] < w[i] > w[i+1]. For example, 123, 213, 312, and 321 have no peaks, while 132 has one peak. Note also T(n,k) = 2^(n - 1 - 2*k)*A055151(n-1,k). - Kyle Petersen, Aug 02 2013
REFERENCES
T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 4.3.
LINKS
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 7.
Jean-Luc Baril, Sergey Kirgizov, and Vincent Vanjovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, Disc. Math. 341 (2018) 2608-2615, Table 1.
Andrew M. Baxter, Refining enumeration schemes to count according to permutation statistics, arXiv:1401.0337 [math.CO], 2014.
Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.
David Callan, A variant of Touchard's Catalan number identity, arXiv:1204.5704 [math.CO], 2012. - N. J. A. Sloane, Oct 10 2012
David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
Colin Defant, Postorder Preimages, arXiv:1604.01723 [math.CO], 2016.
Colin Defant, Stack-Sorting Preimages of Permutation Classes, arXiv:1809.03123 [math.CO], 2018.
Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019.
Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202 (see pp. 192-193)..
M. Dziemiańczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 6.
K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
Lara Pudwell, On the distribution of peaks (and other statistics), 16th International Conference on Permutation Patterns, Dartmouth College, 2018. [Broken link]
John Riordan, A Note on Catalan Parentheses, Amer. Math. Monthly, Vol. 80, No. 8 (1973), pp. 904-906.
Tom Roberts and Thomas Prellberg, Improving Convergence of Generalised Rosenbluth Sampling for Branched Polymer Models by Uniform Sampling, arXiv:2401.12201 [cond-mat.stat-mech], 2024. See p. 12.
A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
L. W. Shapiro, A short proof of an identity of Touchard's concerning Catalan numbers, J. Combin. Theory Ser. A 20 (1976) 375-376.
Guoce Xin and Jing-Feng Xu, A short approach to Catalan numbers modulo 2^r, Electronic Journal of Combinatorics Vol. 18 Issue 1 (2011), #P177 (see page 2).
Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
FORMULA
T(n,k) = 2^(n - 2*k - 1)*binomial(n-1,2*k)*binomial(2*k,k)/(k + 1), T(0,0) = 1, for 0 <= k <= floor((n-1)/2).
G.f.: G = G(t,z) satisfies: t*z*G^2 - (1 - 2*z + 2*t*z)*G + 1 - z + t*z = 0.
With first row zero, the o.g.f. is g(x,t) = (1 - 2*x - sqrt((1 - 2*x)^2 - 4*t*x^2)) / (2*t*x) with the inverse ginv(x,t) = x / (1 + 2*x + t*x^2), an o.g.f. for shifted A207538 and A133156 mod signs, so A134264 and A125181 can be used to interpret the polynomials of this entry. Cf. A097610. - Tom Copeland, Feb 08 2016
If we delete the first 1 from the data these are the coefficients of the polynomials p(n) = 2^n*hypergeom([(1 - n)/2, - n/2], [2], x). - Peter Luschny, Jan 23 2018
EXAMPLE
T(4,1) = 6 because we have uduu(ddu)d, uu(ddu)dud, uuu(ddu)dd, uu(ddu)udd, uudu(ddu)d and uuud(ddu)d [here u = (1,1), d = (1,-1) and the ddu's are shown between parentheses].
Triangle begins:
1;
1;
2;
4, 1;
8, 6;
16, 24, 2;
32, 80, 20;
64, 240, 120, 5;
128, 672, 560, 70;
256, 1792, 2240, 560, 14;
...
MAPLE
a := proc(n, k) if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)*binomial(n-1, 2*k)*binomial(2*k, k)/(k+1) fi end: 1, seq(seq(a(n, k), k=0..(n-1)/2), n=1..15);
MATHEMATICA
A091894[n_] := Prepend[Table[ CoefficientList[ 2^i (1 - z)^((2 i + 3)/2) Hypergeometric2F1[(i + 3)/2, (i + 4)/2, 2, z], z], {i, 0, n}], {1}] (* computes a table of the first n rows. Stumbled accidentally on it. Perhaps someone can find a relationship here? Thies Heidecke (theidecke(AT)astrophysik.uni-kiel.de), Sep 23 2008 *)
Join[{1}, Select[Flatten[Table[2^(n-2k-1) Binomial[n-1, 2k] Binomial[2k, k]/ (k+1), {n, 20}, {k, 0, n}]], #!=0&]] (* Harvey P. Dale, Mar 05 2012 *)
p[n_] := 2^n Hypergeometric2F1[(1 - n)/2, -n/2, 2, x]; Flatten[Join[{{1}}, Table[CoefficientList[p[n], x], {n, 0, 12}]]] (* Peter Luschny, Jan 23 2018 *)
PROG
(PARI) {T(n, k) = if( n<1, n==0 && k==0, polcoeff( polcoeff( serreverse( x / (1 + 2*x*y + x^2) + x * O(x^n)), n), n-1 - 2*k))} /* Michael Somos, Sep 25 2006 */
(GAP) T:=Concatenation([1], Flat(List([1..13], n->List([0..Int((n-1)/2)], k->2^(n-2*k-1)*Binomial(n-1, 2*k)*Binomial(2*k, k)/(k+1))))); # Muniru A Asiru, Nov 29 2018
(Sage) [1] + [[2^(n-2*k-1)*binomial(n-1, 2*k)*binomial(2*k, k)/(k+1) for k in (0..floor((n-1)/2))] for n in (1..12)] # G. C. Greubel, Nov 30 2018
CROSSREFS
The first few columns equal A011782, A001788, 2*A003472, 5*A002409, 14*A140325 and 42*A172242. - Johannes W. Meijer, Sep 13 2012
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Mar 10 2004
STATUS
approved
T(n,k) = binomial(n,2*k)*binomial(2*k,k) for 0 <= k <= n, triangle read by rows.
+10
17
1, 1, 0, 1, 2, 0, 1, 6, 0, 0, 1, 12, 6, 0, 0, 1, 20, 30, 0, 0, 0, 1, 30, 90, 20, 0, 0, 0, 1, 42, 210, 140, 0, 0, 0, 0, 1, 56, 420, 560, 70, 0, 0, 0, 0, 1, 72, 756, 1680, 630, 0, 0, 0, 0, 0, 1, 90, 1260, 4200, 3150, 252, 0, 0, 0, 0, 0, 1, 110, 1980, 9240, 11550, 2772, 0, 0, 0, 0, 0, 0, 1, 132, 2970, 18480, 34650, 16632, 924, 0, 0, 0, 0, 0, 0, 1, 156, 4290, 34320, 90090, 72072, 12012, 0, 0, 0, 0, 0, 0, 0, 1, 182, 6006, 60060, 210210, 252252, 84084, 3432, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,5
COMMENTS
The rows of this triangle are the gamma vectors of the n-dimensional type B associahedra (Postnikov et al., p.38 ). Cf. A055151 and A101280. - Peter Bala, Oct 28 2008
T(n,k) is the number of Grand Motzkin paths of length n having exactly k upsteps (1,1). Cf. A109189, A055151. - Geoffrey Critzer, Feb 05 2014
The result Sum_{k = 0..floor(n/2)} C(n,2*k)*C(2*k,k)*x^k = (sqrt(1 - 4*x))^n* P(n,1/sqrt(1 - 4*x)) expressing the row polynomials of this triangle in terms of the Legendre polynomials P(n,x) is due to Catalan. See Laden, equation 7.10, p. 56. - Peter Bala, Mar 18 2018
LINKS
Rui Duarte and António Guedes de Oliveira, A Famous Identity of Hajós in Terms of Sets, Journal of Integer Sequences, Vol. 17 (2014), #14.9.1.
Hyman N. Laden, An historical, and critical development of the theory of Legendre polynomials before 1900, Master of Arts Thesis, University of Maryland 1938.
A. Postnikov, V. Reiner, and L. Williams, Faces of generalized permutohedra, arXiv:math/0609184 [math.CO], 2006-2007.
FORMULA
T(n,k) = n!/((n-2*k)!*k!*k!).
E.g.f.: exp(x)*BesselI(0, 2*x*sqrt(y)). - Vladeta Jovovic, Apr 07 2005
O.g.f.: ( 1 - x - sqrt(1 - 2*x + x^2 - 4*x^2*y))/(2*x^2*y). - Geoffrey Critzer, Feb 05 2014
R(n, x) = hypergeom([1/2 - n/2, -n/2], [1], 4*x) are the row polynomials. - Peter Luschny, Mar 18 2018
From Peter Bala, Jun 23 2023: (Start)
T(n,k) = Sum_{i = 0..k} (-1)^i*binomial(n, i)*binomial(n-i, k-i)^2. Cf. A063007(n,k) = Sum_{i = 0..k} binomial(n, i)^2*binomial(n-i, k-i).
T(n,k) = A063007(n-k,k); that is, the diagonals of this table are the rows of A063007. (End)
EXAMPLE
Triangle begins:
1
1, 0
1, 2, 0
1, 6, 0, 0
1, 12, 6, 0, 0
1, 20, 30, 0, 0, 0
1, 30, 90, 20, 0, 0, 0
1, 42, 210, 140, 0, 0, 0, 0
1, 56, 420, 560, 70, 0, 0, 0, 0
1, 72, 756, 1680, 630, 0, 0, 0, 0, 0
1, 90, 1260, 4200, 3150, 252, 0, 0, 0, 0, 0
1, 110, 1980, 9240, 11550, 2772, 0, 0, 0, 0, 0, 0
1, 132, 2970, 18480, 34650, 16632, 924, 0, 0, 0, 0, 0, 0
Relocating the zeros to be evenly distributed and interpreting the triangle as the coefficients of polynomials
1
1
1 + 2 q^2
1 + 6 q^2
1 + 12 q^2 + 6 q^4
1 + 20 q^2 + 30 q^4
1 + 30 q^2 + 90 q^4 + 20 q^6
1 + 42 q^2 + 210 q^4 + 140 q^6
1 + 56 q^2 + 420 q^4 + 560 q^6 + 70 q^8
then the substitution q^k -> 1/(floor(k/2)+1) gives the Motzkin numbers A001006.
- Peter Luschny, Aug 29 2011
MAPLE
for i from 0 to 12 do seq(binomial(i, j)*binomial(i-j, j), j=0..i) od; # Zerinvary Lajos, Jun 07 2006
# Alternatively:
R := (n, x) -> simplify(hypergeom([1/2 - n/2, -n/2], [1], 4*x)):
Trow := n -> seq(coeff(R(n, x), x, j), j=0..n):
seq(print(Trow(n)), n=0..9); # Peter Luschny, Mar 18 2018
MATHEMATICA
nn=15; mxy=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y); Map[Select[#, #>0&]&, CoefficientList[Series[1/(1-x-2y x^2mxy), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *)
PROG
(PARI)
T(n, k) = binomial(n, 2*k)*binomial(2*k, k);
concat(vector(15, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 01 2018
CROSSREFS
Row sums A002426. Antidiagonal sums A098479.
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Dec 31 2003
STATUS
approved
Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center.
+10
15
1, 3, 10, 30, 90, 266, 784, 2304, 6765, 19855, 58278, 171106, 502593, 1477035, 4343160, 12778152, 37616427, 110797569, 326527350, 962803170, 2840372304, 8383467708, 24755608584, 73133433800, 216143407675, 639062383401
OFFSET
1,2
COMMENTS
Number of "up" steps in all Motzkin paths of length n+1. E.g. a(2)=3 because in the four Motzkin paths of length 3, HHH, HUD, UDH and UHD, where H=(1,0), U=(1,1), D=(1,-1), we have altogether three U steps. - Emeric Deutsch, Dec 26 2003
a(n-1) = A111808(n,n-2) for n>1. - Reinhard Zumkeller, Aug 17 2005
a(n) = number of paths in the half-plane x>=0, from (0,0) to (n+1,2), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=2, we have the 3 paths: UUH, HUU, UHU. - José Luis Ramírez Ramírez, Apr 19 2015
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..200 from T. D. Noe)
Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 6.
Eric Weisstein's World of Mathematics, Trinomial Coefficient.
FORMULA
a(n) = A002426(n+1)-A001006(n+1) = a(n-1)+A005717(n)+A014532(n-2) - Henry Bottomley, May 15 2001
E.g.f.: exp(x)*(2*x*BesselI(1, 2*x)+(x-2)*BesselI(2, 2*x))/x. - Vladeta Jovovic, Aug 21 2003
G.f.: [1-2z-z^2-(1-z)q]/(2z^3q), where q=sqrt(1-2z-3z^2). - Emeric Deutsch, Dec 26 2003
a(n) = Sum_{k=0..n+1} C(n+1,k)*C(n-k+1,k+2). - Paul Barry, Sep 20 2004
D-finite with recurrence (n+3)*(n-1)*a(n) -(n+1)*(2n+1)*a(n-2)-3*n*(n+1)*a(n-2)=0. - R. J. Mathar, Dec 08 2011
a(n) = n*(n+1)*hypergeom([(1-n)/2, 1-n/2], [3], 4)/2. - Peter Luschny, Nov 23 2014
G.f.: z*M(z)^2/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = GegenbauerC(n-1, -n-1, -1/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k>0} k * A055151(n+1,k). - Alois P. Heinz, Mar 29 2020
MAPLE
seq( add(binomial(i+1, k)*binomial(i-k+1, k+2), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
a := n -> simplify(GegenbauerC(n-1, -n-1, -1/2)):
seq(a(n), n=1..26); # Peter Luschny, May 09 2016
MATHEMATICA
Table[Sum[Binomial[i + 1, k]*Binomial[i - k + 1, k + 2], {k, 0, Floor[i/2]}], {i, 30}] (* Michael De Vlieger, Apr 20 2015 *)
Table[GegenbauerC[n - 1, -n - 1, -1/2], {n, 1, 50}] (* G. C. Greubel, Feb 28 2017 *)
PROG
(Sage)
a = lambda n: n*(n+1)*hypergeometric([(1-n)/2, 1-n/2], [3], 4)/2
[simplify(a(n)) for n in (1..26)] # Peter Luschny, Nov 23 2014
(PARI) for(n=1, 25, print1(sum(k=0, n+1, binomial(n+1, k)*binomial(n-k+1, k+2)), ", ")) \\ G. C. Greubel, Feb 28 2017
CROSSREFS
First differences are in A025180.
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Feb 05 2000
STATUS
approved
A Motzkin related triangle.
+10
12
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 2, 6, 1, 0, 0, 0, 10, 10, 1, 0, 0, 0, 5, 30, 15, 1, 0, 0, 0, 0, 35, 70, 21, 1, 0, 0, 0, 0, 14, 140, 140, 28, 1, 0, 0, 0, 0, 0, 126, 420, 252, 36, 1, 0, 0, 0, 0, 0, 42, 630, 1050, 420, 45, 1, 0, 0, 0, 0, 0, 0, 462, 2310, 2310, 660, 55, 1
OFFSET
0,9
COMMENTS
Row sums are Motzkin numbers A001006. Diagonal sums are A025250(n+1).
Inverse binomial transform of Narayana number triangle A001263. - Paul Barry, May 15 2005
T(n,k)=number of Motzkin paths of length n with k steps U=(1,1) or H=(1,0). Example: T(3,2)=3 because we have HUD, UDH and UHD (here D=(1,-1)). T(n,k) = number of bushes with n+1 edges and k+1 leaves (a bush is an ordered tree in which the outdegree of each nonroot node is at least two). - Emeric Deutsch, May 29 2005
Row reverse of A055151. - Peter Bala, May 07 2012
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, which give the row polynomials (mod signs) of the o.g.f. that is the compositional inverse for an o.g.f. of the Fibonacci polynomials of A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131. The diagonals of A107131 give the columns of A055151. From the relation between A088617 and A107131, the o.g.f. of this entry is (1 - t*x - sqrt((1-t*x)^2 - 4*t*x^2))/(2*t*x^2). - Tom Copeland, Jan 21 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Consecutive patterns in restricted permutations and involutions, arXiv:1902.02213 [math.CO], 2019.
Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
FORMULA
Number triangle T(n, k) = binomial(k+1, n-k+1)*binomial(n, k)/(k+1).
T(n, k) = Sum_{j=0..n} (-1)^(n-j)C(n, j)*C(j+1, k)*C(j+1, k+1)/(j+1). - Paul Barry, May 15 2005
G.f.: G = G(t, z) satisfies G = 1 + t*z*G + t*z^2*G^2. - Emeric Deutsch, May 29 2005
Coefficient array for the polynomials x^n*Hypergeometric2F1((1-n)/2, -n/2; 2; 4/x). - Paul Barry, Oct 04 2008
From Paul Barry, Jan 12 2009: (Start)
G.f.: 1/(1-xy(1+x)/(1-x^2*y/(1-xy(1+x)/(1-x^2y/(1-xy(1+x).... (continued fraction).
T(n,k) = C(n, 2n-2k)*A000108(n-k). (End)
EXAMPLE
Triangle begins
1;
0, 1;
0, 1, 1;
0, 0, 3, 1;
0, 0, 2, 6, 1;
0, 0, 0, 10, 10, 1;
0, 0, 0, 5, 30, 15, 1;
0, 0, 0, 0, 35, 70, 21, 1;
0, 0, 0, 0, 14, 140, 140, 28, 1;
0, 0, 0, 0, 0, 126, 420, 252, 36, 1;
MAPLE
egf := exp(t*x)*hypergeom([], [2], t*x^2);
s := n -> n!*coeff(series(egf, x, n+2), x, n);
seq(print(seq(coeff(s(n), t, j), j=0..n)), n=0..9); # Peter Luschny, Oct 29 2014
MATHEMATICA
T[n_, k_] := Binomial[k+1, n-k+1] Binomial[n, k]/(k+1);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 19 2018 *)
PROG
(Magma) [Binomial(n, 2*(n-k))*Catalan(n-k): k in [0..n], n in [0..13]]; // G. C. Greubel, May 22 2022
(SageMath) flatten([[binomial(n, 2*(n-k))*catalan_number(n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022
CROSSREFS
Cf. A001006 (row sums), A025250 (diag. sums), A055151 (row reverse).
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 12 2005
STATUS
approved
Extended Motzkin numbers, Sum_{k>=0} C(n,k)C(k), C(k) the extended Catalan number A057977(k).
+10
9
1, 2, 4, 10, 25, 66, 177, 484, 1339, 3742, 10538, 29866, 85087, 243478, 699324, 2015082, 5822619, 16865718, 48958404, 142390542, 414837699, 1210439958, 3536809521, 10347314544, 30306977757, 88861597426, 260798283502, 766092871654, 2252240916665
OFFSET
0,2
COMMENTS
a(n) = Sum_{k=0..n} binomial(n,k)*A057977(k). For comparison:
A001006(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*[k is even],
A005717(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*[k is odd].
Thus one might simply say: The extended Motzkin numbers are the binomial sum of the extended Catalan numbers. Moreover: The Catalan numbers aerated with 0's at odd positions (A126120) are the inverse binomial transform of the Motzkin numbers (A001006). The complementary Catalan numbers (A001700) aerated with 0's at even positions (A138364) are the inverse binomial transform of the complementary Motzkin numbers (A005717). The extended Catalan numbers (A057977 = A126120 + A138364) are the inverse binomial transform of the extended Motzkin numbers (A189912).
David Scambler observed that [1, a(n-1)] for n >= 1 count the Dyck paths of semilength n which satisfy the condition "number of peaks <= number of returns + number of hills". - Peter Luschny, Oct 22 2012
LINKS
A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
FORMULA
a(n) = Sum_{k=0..n}(n!/(((n-k)!*floor(k/2)!^2)*(floor(k/2)+1)).
Recurrence: (n+2)*(n^2 + 2*n - 5)*a(n) = (2*n^3 + 7*n^2 - 14*n - 7)*a(n-1) + 3*(n-1)*(n^2 + 4*n - 2)*a(n-2). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 3^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: a(n) = Sum_{k=0..floor(n/2)} (n+1-2*k)*A055151(n,k). - Werner Schulte, Oct 23 2016
a(n) = Sum_{k=0...n} (n+1-2*k)*(n!)/((k!)*(k+1)!*(n-2k)! ). - Per W. Alexandersson, May 28 2020
MAPLE
A189912 := proc(n) local k;
add(n!/(((n-k)!*iquo(k, 2)!^2)*(iquo(k, 2)+1)), k=0..n) end:
M := proc(n) option remember; `if`(n<2, 1, (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2)) end:
A189912 := n -> n*M(n-1)+M(n);
seq(A189912(i), i=0..28); # Peter Luschny, Sep 12 2011
MATHEMATICA
A057977[n_] := n!/(Quotient[n, 2]!^2*(Quotient[n, 2] + 1)); a[n_] := Sum[Binomial[n, k]*A057977[k], {k, 0, n}]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, May 21 2013, after Peter Luschny *)
Table[Sum[n!/(((n-k)!*Floor[k/2]!^2)*(Floor[k/2]+1)), {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jan 24 2017 *)
A057977[n_] := Sum[n! (n + 1 - 2 k)/((k + 1)! (k!) (n - 2 k)!), {k, 0, n}] (* Per W. Alexandersson, May 28 2020 *)
PROG
(Sage)
@CachedFunction
def M(n): return (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2) if n>1 else 1
A189912 = lambda n: n*M(n-1) + M(n)
[A189912(i) for i in (0..28)] # Peter Luschny, Oct 22 2012
(PARI) a(n) = sum(k=0, n, binomial(n, k)*k!/( (k\2)!^2 * (k\2+1)) );
vector(30, n, a(n-1)) \\ G. C. Greubel, Jan 24 2017; Mar 28 2020
KEYWORD
nonn
AUTHOR
Peter Luschny, May 01 2011
STATUS
approved

Search completed in 0.034 seconds