[go: up one dir, main page]

login
Search: a054347 -id:a054347
     Sort: relevance | references | number | modified | created      Format: long | short | data
Natural interspersion of A054347; a rectangular array, by antidiagonals.
+20
3
1, 4, 2, 8, 5, 3, 14, 9, 6, 7, 22, 15, 10, 11, 12, 31, 23, 16, 17, 18, 13, 42, 32, 24, 25, 26, 19, 20, 54, 43, 33, 34, 35, 27, 28, 21, 68, 55, 44, 45, 46, 36, 37, 29, 30, 84, 69, 56, 57, 58, 47, 48, 38, 39, 40, 101, 85, 70, 71, 72, 59, 60, 49, 50, 51, 41, 120, 102
OFFSET
1,2
COMMENTS
See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194054 is a permutation of the positive integers; its inverse is A194055.
EXAMPLE
Northwest corner:
1...4...8...14...22...31
2...5...9...15...23...32
3...6...10..16...24...33
7...11..17..25...34...45
MATHEMATICA
z = 40; g = GoldenRatio
c[k_] := Sum[Floor[j*g], {j, 1, k}];
c = Table[c[k], {k, 1, z}] (* A054347 *)
f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
f = Table[f[n], {n, 1, 800}] (* A194053 *)
r[n_] := Flatten[Position[f, n]]
t[n_, k_] := r[n][[k]]
TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 7}]]
p = Flatten[Table[t[k, n - k + 1], {n, 1, 16}, {k, 1, n}]] (* A194054 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194058 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 15 2011
STATUS
approved
Natural fractal sequence of A054347.
+20
2
1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8
OFFSET
1,2
COMMENTS
See A194029 for definitions of natural fractal sequence and natural interspersion.
MATHEMATICA
z = 40; g = GoldenRatio
c[k_] := Sum[Floor[j*g], {j, 1, k}];
c = Table[c[k], {k, 1, z}] (* A054347 *)
f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
f = Table[f[n], {n, 1, 800}] (* A194053 *)
r[n_] := Flatten[Position[f, n]]
t[n_, k_] := r[n][[k]]
TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 7}]]
p = Flatten[Table[t[k, n - k + 1], {n, 1, 16}, {k, 1, n}]] (* A194054 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194058 *)
CROSSREFS
Cf. A194029.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 15 2011
STATUS
approved
Signature sequence of phi = (1+sqrt(5))/2 = 1.61803...
+10
22
1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, 3, 8, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9, 1, 14, 6, 11, 3, 8, 13, 5, 10, 2, 15, 7, 12, 4, 9, 1, 14, 6, 11, 3, 16, 8, 13, 5, 10, 2, 15, 7, 12, 4, 17, 9, 1
OFFSET
1,2
COMMENTS
Arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x; the sequence of j's is the signature of 1/x.
As a fractal sequence, if the first occurrence of each n is deleted, the remaining sequence is the original. That is, the upper trim of A084531 is A084531. Also, the lower trim of A084531 is A084531, meaning that if 1 is subtracted from every term and then all 0's are deleted, the result is the original sequence. Every fractal sequence begets an interspersion; the interspersion of A084531 is A167267. - Clark Kimberling, Oct 31 2009
The positions of the first occurrence of i in this sequence, i>=1, form sequence A255977. That is, 1 occurs for the first time at position 1, 2 at position 2, 3 at position 4, 4 at position 6, and 1,2,4,6, ... is A255977. - Jeffrey Shallit, Jun 28 2024
REFERENCES
Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.
LINKS
Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.
FORMULA
a(A054347(n) + A255977(m) + m*n) = m. - Alan Michael Gómez Calderón, Nov 21 2024
MATHEMATICA
x = GoldenRatio; Take[Transpose[Sort[Flatten[Table[{i + j*x, i}, {i, 30}, {j, 20}], 1], #1[[1]] < #2[[1]] &]][[2]], 100] (* Clark Kimberling, Nov 10 2012 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Henry Bottomley, May 28 2003
STATUS
approved
Symmetric matrix based on the lower Wythoff sequence, A000201, by antidiagonals.
+10
3
1, 3, 3, 4, 10, 4, 6, 15, 15, 6, 8, 22, 26, 22, 8, 9, 30, 39, 39, 30, 9, 11, 35, 54, 62, 54, 35, 11, 12, 42, 66, 87, 87, 66, 42, 12, 14, 47, 79, 108, 126, 108, 79, 47, 14, 16, 54, 90, 132, 159, 159, 132, 90, 54, 16, 17, 62, 103, 151, 196, 207, 196, 151, 103, 62
OFFSET
1,2
COMMENTS
Let s=(1,3,4,6,8,...)=A000201 and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202869 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202870 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
EXAMPLE
Northwest corner:
1...3....4....6....8....9
3...10...15...22...30...35
4...15...26...39...54...66
6...22...39...62...87...108
8...30...54...87...126..159
MATHEMATICA
s[k_] := Floor[k*GoldenRatio];
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
Table[f[n], {n, 1, 12}]
Table[Sqrt[f[n]], {n, 1, 12}] (* A054347 *)
Table[m[1, j], {j, 1, 12}] (* A000201 *)
CROSSREFS
Cf. A202870.
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 26 2011
STATUS
approved
a(n) = Sum_{k=0..n} floor(k*phi^2) where phi=(1+sqrt(5))/2.
+10
1
0, 2, 7, 14, 24, 37, 52, 70, 90, 113, 139, 167, 198, 232, 268, 307, 348, 392, 439, 488, 540, 594, 651, 711, 773, 838, 906, 976, 1049, 1124, 1202, 1283, 1366, 1452, 1541, 1632, 1726, 1822, 1921, 2023, 2127, 2234, 2343, 2455, 2570, 2687, 2807, 2930, 3055, 3183
OFFSET
0,2
COMMENTS
Partial sums of A001950.
A001950 is the upper Beatty sequence for the constant phi^2, where phi = (1 + sqrt(5))/2 and the sequence is generated by floor(n*phi). A054347 = partial sums of the lower Beatty sequence (A000201).
Conjecture: a(n)/A054347(n) tends to phi. Example: a(28)/A054347(28) = 1049/643 = 1.6314...
From Michel Dekking, Aug 19 2019: (Start)
Proof of Adamson's conjecture. We know that lim_{n->oo} A054347(n)/(n*(n+1)) = phi/2 (see A054347).
Using that floor(k*phi^2) = floor(k*phi)+k, for k=1,...,n, we obtain a(n)/A054347(n) = (A054347(n)+(n*(n+1)/2))/((n*(n+1))))/(A054347(n)/(n*(n+1)/2) [Ambiguous, unbalanced parens - Editors of OEIS] -> (phi/2 + 1/2)/(phi/2), which equals phi.
(End)
FORMULA
a(n) = Sum_{k=1..n} floor(k*phi^2).
a(n) = floor((n*(n+1)/2)*phi^2 - n/2) + (0 or 1). - Benoit Cloitre, Sep 27 2003
EXAMPLE
A001950(1) = 2, then 5, 7, 10, 13, ...; partial sums are 2, 7, 14, 24, 37, ...
MATHEMATICA
a[0] = 0; a[n_] := a[n] = (a[n - 1] + Floor[n*(1 + Sqrt[5])^2/4]); Table[ a[n], {n, 1, 50}] (* Robert G. Wilson v, Sep 27 2003 *)
Accumulate[Floor[GoldenRatio^2 Range[0, 50]]] (* Harvey P. Dale, Aug 11 2021 *)
PROG
(Python)
from math import isqrt
from itertools import islice, count, accumulate
def A088207_gen(): # generator of terms
return accumulate((n+isqrt(5*n**2)>>1)+n for n in count(0))
A088207_list = list(islice(A088207_gen(), 10)) # Chai Wah Wu, Aug 29 2022
CROSSREFS
Cf. A001622 (phi), A001950, A054347, A000201, A000217 (triangular numbers).
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Sep 23 2003
EXTENSIONS
More terms from Robert G. Wilson v and Benoit Cloitre, Sep 27 2003
STATUS
approved

Search completed in 0.006 seconds