[go: up one dir, main page]

login
Search: a049575 -id:a049575
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that the k-th partition number A000041(k) is prime.
+10
50
2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, 188, 212, 216, 302, 366, 417, 440, 491, 498, 525, 546, 658, 735, 753, 825, 841, 863, 1085, 1086, 1296, 1477, 1578, 1586, 1621, 1793, 2051, 2136, 2493, 2502, 2508, 2568, 2633, 2727, 2732, 2871, 2912, 3027, 3098, 3168, 3342, 3542, 3641, 4118
OFFSET
1,1
COMMENTS
The corresponding primes are given in A049575. - Joerg Arndt, May 09 2013
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..4967 (contains all terms below 10^8)
Chris K. Caldwell, Top twenty prime partition numbers, The Prime Pages.
G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), Volume 1(6) (2014), ISSN: 2349-8862.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Eric Weisstein's World of Mathematics, Partition Function P.
Eric Weisstein's World of Mathematics, Integer Sequence Primes.
MATHEMATICA
Select[ Range@3341, PrimeQ@ PartitionsP@# &] (* Robert G. Wilson v *)
PROG
(PARI) for(n=0, 10^5, my(p=numbpart(n)); if(isprime(p), print1(n, ", "))); \\ Joerg Arndt, May 09 2013
(Python)
from sympy import isprime, npartitions
print([n for n in range(1, 5001) if isprime(npartitions(n))]) # Indranil Ghosh, Apr 10 2017
KEYWORD
nonn,nice
EXTENSIONS
b-file extended by Max Alekseyev, Jul 07 2009, Jun 14 2011, Jan 08 2012, May 19 2014
STATUS
approved
Number of ways to write n = k + m with k > 0 and m > 2 such that p(k + phi(m)/2) is prime, where p(.) is the partition function (A000041) and phi(.) is Euler's totient function.
+10
17
0, 0, 0, 1, 2, 3, 4, 5, 5, 4, 4, 4, 2, 2, 3, 5, 4, 2, 4, 2, 3, 2, 3, 2, 3, 1, 0, 3, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 4, 2, 1, 4, 2, 1, 2, 3, 3, 3, 1, 0, 4, 2, 4, 1, 1, 2, 2, 3, 2, 2, 0, 2, 2, 1, 2, 2, 1, 1, 2, 2, 4, 2, 1, 0, 1, 3, 1, 0, 2, 4, 3, 1, 6, 2, 2, 1, 2, 4, 3, 1, 2, 6, 2, 3, 2, 2, 2, 2, 3, 3
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 if n > 3 is not among 27, 34, 50, 61, 74, 78, 115, 120, 123, 127.
This implies that there are infinitely many primes in the range of the partition function p(n).
LINKS
EXAMPLE
a(26) = 1 since 26 = 2 + 24 with p(2 + phi(24)/2) = p(6) = 11 prime.
a(54) = 1 since 54 = 27 + 27 with p(27 + phi(27)/2) = p(36) = 17977 prime.
a(73) = 1 since 73 = 1 + 72 with p(1 + phi(72)/2) = p(36) = 17977 prime.
a(110) = 1 since 110 = 65 + 45 with p(65 + phi(45)/2) = p(77) = 10619863 prime.
a(150) = 1 since 150 = 123 + 27 with p(123 + phi(27)/2) = p(132) = 6620830889 prime.
a(170) = 1 since 170 = 167 + 3 with p(167 + phi(3)/2) = p(168) = 228204732751 prime.
MATHEMATICA
f[n_, k_]:=PartitionsP[k+EulerPhi[n-k]/2]
a[n_]:=Sum[If[PrimeQ[f[n, k]], 1, 0], {k, 1, n-3}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 26 2013
STATUS
approved
Primes p with P(p-1) also prime, where P(.) is the partition function (A000041).
+10
12
3, 5, 7, 37, 367, 499, 547, 659, 1087, 1297, 1579, 2137, 2503, 3169, 3343, 4457, 4663, 5003, 7459, 9293, 16249, 23203, 34667, 39971, 41381, 56383, 61751, 62987, 72661, 77213, 79697, 98893, 101771, 127081, 136193, 188843, 193811, 259627, 267187, 282913, 315467, 320563, 345923, 354833, 459029, 482837, 496477, 548039, 641419, 647189
OFFSET
1,1
COMMENTS
By the conjecture in A234567, this sequence should have infinitely many terms. It seems that a(n+1) < a(n) + a(n-1) for all n > 5.
The b-file lists all terms not exceeding the 500000th prime 7368787. Note that P(a(113)-1) is a prime having 2999 decimal digits.
See also A234572 for primes of the form P(p-1) with p prime.
LINKS
EXAMPLE
a(1) = 3 since P(2-1) = 1 is not prime, but P(3-1) = 2 is prime.
a(2) = 5 since P(5-1) = 5 is prime.
a(3) = 7 since P(7-1) = 11 is prime.
MATHEMATICA
n=0; Do[If[PrimeQ[PartitionsP[Prime[k]-1]], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 10^6}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 28 2013
STATUS
approved
Number of distinct partition numbers dividing n.
+10
9
1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 1, 3, 4, 2, 1, 3, 1, 3, 3, 4, 1, 3, 2, 2, 2, 3, 1, 6, 1, 2, 3, 2, 3, 3, 1, 2, 2, 3, 1, 5, 1, 4, 4, 2, 1, 3, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 6, 1, 2, 3, 2, 2, 5, 1, 2, 2, 4, 1, 3, 1, 2, 4, 2, 4, 3, 1, 3, 2, 2, 1, 5, 2, 2, 2, 4, 1, 6
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Jan 01 2024: (Start)
a(n) = Sum_{d|n} A167392(d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A078506 = 2.510597... . (End)
EXAMPLE
For n = 20 the divisors of 20 are 1, 2, 4, 5, 10, 20 and three of them are also partition numbers: 1, 2, 5, so a(20) = 3.
For n = 42 the divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42 and five of them are also partition numbers: 1, 2, 3, 7, 42, so a(42) = 5.
MATHEMATICA
p = {1}; Table[If[n >= Last@p, AppendTo[p, PartitionsP[1 + Length@p]]]; Length@Select[p, Mod[n, #] == 0 &], {n, 90}] (* Giovanni Resta, Jan 22 2014 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 21 2014
STATUS
approved
Nonprimes whose proper divisors are partition numbers.
+10
7
4, 6, 9, 10, 14, 15, 21, 22, 25, 33, 35, 49, 55, 77, 121, 202, 303, 505, 707, 1111, 10201, 35954, 53931, 89885, 125839, 197747, 1815677, 21239726, 31859589, 53099315, 74339041, 116818493, 323172529, 1072606163, 13241661778, 19862492667, 33104154445, 46345816223, 72829139779
OFFSET
1,1
COMMENTS
Known terms are squares of A049575 or products of 2 distinct terms of A049575. - Michel Marcus, Jan 25 2023
This conjecture holds for terms <= 10^16. - David A. Corneth, Jan 25 2023
LINKS
EXAMPLE
10 is in the sequence because 10 is a nonprime number and the proper divisors of 10 are 1, 2, 5, which are also partition numbers.
MAPLE
isA000041 := proc(n)
local k, P;
for k from 1 do
P := combinat[numbpart](k) ;
if P > n then
return false;
elif P = n then
return true ;
end if;
end do:
end proc:
isA236108 := proc(n)
local pdvs, d ;
if n =1 or isprime(n) then
return false;
end if;
pdvs := numtheory[divisors](n) minus {n} ;
for d in pdvs do
if not isA000041(d) then
return false;
end if;
end do:
return true;
end proc:
for n from 1 to 300000 do
if isA236108(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jan 29 2014
MATHEMATICA
partitionNumbers = Table[PartitionsP[n], {n, 1, 1000}];
Select[Range[2, 10000],
If[! PrimeQ[#],
ContainsOnly[Divisors[#][[2 ;; -2]], partitionNumbers]] &] (* Julien Kluge, Dec 03 2016 *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 22 2014
EXTENSIONS
a(17)-a(26) from R. J. Mathar, Jan 29 2014
a(27)-a(32) from Jon E. Schoenfield, Feb 05 2014
a(33)-a(34) from Michel Marcus, Jan 24 2023
More terms from David A. Corneth, Jan 25 2023
STATUS
approved
Primes of the form P(p-1), where p is a prime and P(.) is the partition function (A000041).
+10
6
2, 5, 11, 17977, 790738119649411319, 2058791472042884901563, 27833079238879849385687, 8121368081058512888507057, 675004412390512738195023734124239, 1398703012615213588677365804960180341, 16193798232344933888778097136641377589301, 204931453786129197483756438132982529754356479553, 3019564607799532159016586951616642980389816614848623, 22757918197082858017617136646280039394687006502870793231847, 1078734573992480956821414895441907729656949308800686938161281
OFFSET
1,1
COMMENTS
Though the primes in this sequence are very rare, by the conjecture in A234567 there should be infinitely many such primes.
See A234569 for a list of known primes p with P(p-1) also prime.
LINKS
FORMULA
a(n) = A000041(A234569(n)-1).
EXAMPLE
a(1) = 2 since 2 = P(3-1) with 2 and 3 both prime.
a(2) = 5 since 5 = P(5-1) with 5 prime.
a(3) = 11 since 11 = P(7-1) with 7 and 11 both prime.
MATHEMATICA
p[n_]:= A234569(n)
Table[PartitionsP[p[n]-1], {n, 1, 15}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 28 2013
STATUS
approved
Numbers whose divisors are partition numbers.
+10
6
1, 2, 3, 5, 7, 11, 15, 22, 77, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557, 74878248419470886233, 1394313503224447816939
OFFSET
1,2
COMMENTS
By definition all terms are partition numbers.
All members of A049575 are in this sequence.
Conjecture: the only composite numbers in this sequence are 15, 22, and 77. - Jon E. Schoenfield, Feb 05 2014
EXAMPLE
15 is in the sequence because the divisors of 15 are 1, 3, 5, 15, which are also partition numbers.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 21 2014
EXTENSIONS
More terms from Jon E. Schoenfield, Feb 05 2014
STATUS
approved
Partition numbers rounded to nearest integer given by the Hardy-Ramanujan approximate formula.
+10
4
2, 3, 4, 6, 9, 13, 18, 26, 35, 48, 65, 87, 115, 152, 199, 258, 333, 427, 545, 692, 875, 1102, 1381, 1725, 2145, 2659, 3285, 4046, 4967, 6080, 7423, 9037, 10974, 13293, 16065, 19370, 23304, 27977, 33519, 40080, 47833, 56981, 67757, 80431, 95316
OFFSET
1,1
COMMENTS
The mounting error seems to be approximately A035949(n-3), n >= 4. - Alonso del Arte, Jul 28 2011
This conjecture is false, for correct approximation see the formula below. - Vaclav Kotesovec, Apr 03 2017
REFERENCES
John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 95.
FORMULA
a(n) = round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))). - Alonso del Arte, May 21 2011
a(n) - A000041(n) ~ (1/Pi + Pi/72) * exp(sqrt(2*n/3)*Pi) / (4*sqrt(2)*n^(3/2)) * (1 - (9 + Pi^2/48)*Pi/((72 + Pi^2)*sqrt(6*n))). - Vaclav Kotesovec, Apr 03 2017
MAPLE
A050811:=n->round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))): seq(A050811(n), n=1..70); # Wesley Ivan Hurt, Sep 11 2015
MATHEMATICA
f[n_] := Round[ E^(Sqrt[2n/3] Pi)/(4Sqrt[3] n)]; Array[f, 45] (* Alonso del Arte, May 21 2011, corrected by Robert G. Wilson v, Sep 11 2015 *)
PROG
(UBASIC) input N:print round(#e^(pi(1)*sqrt(2*N/3))/(4*N*sqrt(3)))
(PARI) a(n)=round(exp(Pi*sqrt(2*n/3))/(4*n*sqrt(3))) \\ Charles R Greathouse IV, May 01 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Oct 15 1999
EXTENSIONS
a(1) = 1 replaced by 2, a(2) = 2 replaced by 3. - Alonso del Arte, D. S. McNeil, Aug 07 2011
STATUS
approved
Numbers k such that the k-th prime is a partition number.
+10
4
1, 2, 3, 4, 5, 26, 2061, 702993, 307058572, 3350187739, 9088200428, 43794115173, 51932790219, 378210209388, 521301342188, 297064987225918, 19677201507658441, 437852535314831447, 1673669998972800207, 29252504332047744188, 42842701894337201916
OFFSET
1,2
FORMULA
a(n) = A000720(A049575(n)).
MATHEMATICA
PrimePi@Select[PartitionsP@Range@301, PrimeQ@# &] (* Robert G. Wilson v, Nov 14 2005 *)
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
a(16)-a(21) using Kim Walisch's primecount, from Amiram Eldar, Jul 26 2019
STATUS
approved
Partition numbers (A000041) that are semiprimes (A001358).
+10
4
15, 22, 77, 1255, 2012558, 2679689, 9289091, 18004327, 38887673, 56634173, 72533807, 82010177, 104651419, 2056148051, 2552338241, 20390982757, 27517052599, 118159068427, 749474411781, 5134205287973, 18028182516671
OFFSET
1,1
COMMENTS
Enoch Haga asks if this is a finite sequence. The larger these numbers get, the more opportunity for more factors.
LINKS
Hisanori Mishima, Factorization results
Eric Weisstein's World of Mathematics, Semiprime.
FORMULA
A064911(a(n))*A167392(a(n)) = 1. [From Reinhard Zumkeller, Nov 03 2009]
EXAMPLE
E.g., the 808th partition number 8151756509675604512522473567 = 5963320232189 * 1366982853893003.
MATHEMATICA
Select[PartitionsP[Range[0, 450]], PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 19 2016 *)
PROG
(PARI) { n=0; for (m=1, 10^9, p=numbpart(m); if (bigomega(p) == 2, write("b065728.txt", n++, " ", p); if (n==100, return)) ) } \\ Harry J. Smith, Oct 28 2009
CROSSREFS
Intersection of A001358 and A000041.
KEYWORD
nonn
AUTHOR
Patrick De Geest, Nov 18 2001
EXTENSIONS
OFFSET changed from 0,1 to 1,1 by Harry J. Smith, Oct 28 2009
STATUS
approved

Search completed in 0.013 seconds