[go: up one dir, main page]

login
Search: a048296 -id:a048296
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of Artin's constant Product_{p=prime} (1-1/(p^2-p)).
(Formerly M2608)
+10
96
3, 7, 3, 9, 5, 5, 8, 1, 3, 6, 1, 9, 2, 0, 2, 2, 8, 8, 0, 5, 4, 7, 2, 8, 0, 5, 4, 3, 4, 6, 4, 1, 6, 4, 1, 5, 1, 1, 1, 6, 2, 9, 2, 4, 8, 6, 0, 6, 1, 5, 0, 0, 4, 2, 0, 9, 4, 7, 4, 2, 8, 0, 2, 4, 1, 7, 3, 5, 0, 1, 8, 2, 0, 4, 0, 0, 2, 8, 0, 8, 2, 3, 4, 4, 3, 0, 4, 3, 1, 7, 0, 8, 7, 2, 5, 0, 5, 6, 8, 9, 8, 1, 6, 0, 3
OFFSET
0,1
COMMENTS
On Simon Plouffe's web page (and in the book freely available at Gutenberg project) the value is given with an error of +1e-31, as "...651641..." instead of "...641641...". In the reference [Wrench, 1961] cited there, these digits are correct. They are also correct on the Plouffe's Inverter page, as computed by Oliveira e Silva, who comments it took 1 hour at 200 MHz with Mathematica. Using Amiram Eldar's PARI program, the same 500 digits are computed instantly (less than 0.1 sec). - M. F. Hasler, Apr 20 2021
Named after the Austrian mathematician Emil Artin (1898-1962). - Amiram Eldar, Jun 20 2021
REFERENCES
Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ivan Cherednik, A note on Artin's constant, arXiv:0810.2325 [math.NT], 2008.
Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 156 (constant C7).
R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2001; constant A_1^(1).
Pieter Moree, Artin's primitive root conjecture - a survey, arXiv:math/0412262 [math.NT], 2004-2012.
Pieter Moree, The formal series Witt transform, Discr. Math., Vol. 295, No. 1-3 (2005), pp. 143-160. See p. 159.
G. Niklasch, Artin's constant.
Simon Plouffe, The Artin's Constant=product(1-1/(p**2-p), p=prime) [backup on web.archive.org; chapter 8 of the free Gutenberg.org/ebooks/634]. [Warning: the value given in this reference is incorrect, cf. comment!]
Tomás Oliveira e Silva and Plouffe's Inverter, The first 500 digits of Artin's constant.
Eric Weisstein's World of Mathematics, Artin's constant.
Eric Weisstein's World of Mathematics, Full Reptend Prime.
John W. Wrench, Jr., Evaluation of Artin's constant and the twin-prime constant, Math. Comp., Vol. 15, No. 76 (1961), pp. 396-398.
FORMULA
Equals Product_{j>=2} 1/Zeta(j)^A006206(j), where Zeta = A013661, A002117 etc. is Riemann's zeta function. - R. J. Mathar, Feb 14 2009
Equals Sum_{k>=1} mu(k)/(k*phi(k)), where mu is the Moebius function (A008683) and phi is the Euler totient function (A000010). - Amiram Eldar, Mar 11 2020
Equals 1/A065488. - Vaclav Kotesovec, Jul 17 2021
EXAMPLE
0.37395581361920228805472805434641641511162924860615...
MATHEMATICA
a = Exp[-NSum[ (LucasL[n] - 1)/n PrimeZetaP[n], {n, 2, Infinity}, PrecisionGoal -> 500, WorkingPrecision -> 500, NSumTerms -> 100000]]; RealDigits[a, 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 taken from Mathematica's Help file on PrimeZetaP *)
PROG
(PARI) prodinf(n=2, 1/zeta(n)^(sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)) \\ Charles R Greathouse IV, Aug 27 2014
(PARI) prodeulerrat(1-1/(p^2-p)) \\ Amiram Eldar, Mar 12 2021
CROSSREFS
KEYWORD
nonn,cons
EXTENSIONS
More terms from Tomás Oliveira e Silva (http://www.ieeta.pt/~tos)
STATUS
approved
Full reptend primes: primes with primitive root 10.
(Formerly M4353 N1823)
+10
60
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983
OFFSET
1,1
COMMENTS
Primes p such that the decimal expansion of 1/p has period p-1, which is the greatest period possible for any integer.
Primes p such that the corresponding entry in A002371 is p-1.
Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.
R. K. Guy writes (Oct 20 2004): MR 2004j:11141 speaks of the unearthing by Lenstra & Stevenhagen of correspondence concerning the density of this sequence between the Lehmers & Artin.
Also called long period primes, long primes or maximal period primes.
The base-10 cyclic numbers A180340, (b^(p-1) - 1) / p, with b = 10, are obtained from the full reptend primes p. - Daniel Forgues, Dec 17 2012
The number of terms < 10^n: A086018(n). - Robert G. Wilson v, Aug 18 2014
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309.
John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 161.
C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 380.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 115.
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 61.
H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), Ch. 19, 'Die periodischen Dezimalbrüche'.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Sebastian M. Cioabă and Werner Linde, A Bridge to Advanced Mathematics: from Natural to Complex Numbers, Amer. Math. Soc. (2023) Vol. 58, see page 186.
L. J. Goldstein, Density questions in algebraic number theory, Amer. Math. Monthly, 78 (1971), 342-349.
Katsuya Mori, On a Certain Inverse Problem for Carousel Numbers, INTEGERS 20 (2020), #A77.
Matt Parker and Brady Haran, The Reciprocals of Primes, Numberphile video (2022)
Eric Weisstein's World of Mathematics, Cyclic Number.
Eric Weisstein's World of Mathematics, Decimal Expansion.
Eric Weisstein's World of Mathematics, Full Reptend Prime.
D. Williams, Primitive Roots (Check) [Dead link]
Chai Wah Wu, Pigeonholes and repunits, Amer. Math. Monthly, 121 (2014), 529-533.
EXAMPLE
7 is in the sequence because 1/7 = 0.142857142857... and the period = 7-1 = 6.
MAPLE
A001913 := proc(n) local st, period:
st := ithprime(n):
period := numtheory[order](10, st):
if (st-1 = period) then
RETURN(st):
fi: end: seq(A001913(n), n=1..200); # Jani Melik, Feb 25 2011
MATHEMATICA
pr=10; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
(* Second program: *)
Join[{7}, Select[Prime[Range[300]], PrimitiveRoot[#, 10]==10&]] (* Harvey P. Dale, Feb 01 2018 *)
PROG
(PARI) forprime(p=7, 1e3, if(znorder(Mod(10, p))+1==p, print1(p", "))) \\ Charles R Greathouse IV, Feb 27 2011
(PARI) is(n)=Mod(10, n)^(n\2)==-1 && isprime(n) && znorder(Mod(10, n))+1==n \\ Charles R Greathouse IV, Oct 24 2013
CROSSREFS
Apart from initial term, identical to A006883.
Other definitions of cyclic numbers: A003277, A001914, A180340.
KEYWORD
nonn,easy,nice
STATUS
approved
Decimal expansion of Product_{p prime} (1 + 1/(p^2-p-1)).
+10
6
2, 6, 7, 4, 1, 1, 2, 7, 2, 5, 5, 7, 0, 0, 2, 1, 5, 0, 8, 9, 6, 0, 4, 1, 1, 8, 3, 0, 4, 4, 5, 4, 8, 8, 0, 3, 7, 5, 0, 2, 3, 9, 8, 6, 2, 8, 3, 9, 7, 6, 9, 1, 9, 8, 5, 2, 0, 0, 8, 1, 9, 0, 4, 1, 9, 6, 0, 8, 6, 5, 9, 5, 6, 1, 0, 5, 3, 0, 2, 8, 6, 8, 6, 4, 4, 8, 5, 0, 9, 2, 9, 7, 1, 7, 3, 4, 8, 5, 7
OFFSET
1,1
COMMENTS
This is 1/Artin's constant, see A005596.
EXAMPLE
2.67411272557002150896041183...
MATHEMATICA
$MaxExtraPrecision = 1200; digits = 99; terms = 1200; P[n_] := PrimeZetaP[n ]; LR = Join[{0, 0}, LinearRecurrence[{2, 0, -1}, {2, 3, 6}, term+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
PROG
(PARI) prodeulerrat(1 + 1/(p^2-p-1)) \\ Amiram Eldar, Mar 15 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
N. J. A. Sloane, Nov 19 2001
STATUS
approved
Largest prime divisor of numerator of the n-th Artin's product.
+10
3
5, 19, 41, 109, 109, 271, 271, 271, 811, 929, 929, 929, 929, 2161, 2161, 2161, 3659, 4421, 4969, 4969, 4969, 4969, 4969, 9311, 10099, 10099, 10099, 10099, 10099, 16001, 17029, 17029, 19181, 22051, 22051, 22051, 22051, 22051, 22051, 22051, 32579
OFFSET
2,1
COMMENTS
Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin's product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]. a(n) is prime from A091568 of the form p^2-p-1, where p is prime from A091567.
LINKS
Eric Weisstein's World of Mathematics, Artin's Constant.
FORMULA
a(n) = Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}]]]].
MATHEMATICA
Table[Max[FactorInteger[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)), {k, 1, n}]]]], {n, 2, 100}]
PROG
(Magma) [Max(PrimeDivisors(Numerator(&*[1-1/(NthPrime(k)^2-NthPrime(k)):k in [1..n]]))): n in [2..45]]; // Marius A. Burtea, Feb 18 2020
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jul 27 2006
STATUS
approved
Numerator of the n-th Artin product.
+10
0
1, 5, 19, 779, 84911, 2632241, 713337311, 1163866139, 587752400195, 476667196558145, 2856927907113011, 345688276760674331, 13819099649042566549, 4988694973304366524189, 10780569837310736058772429
OFFSET
1,2
COMMENTS
Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}].
LINKS
Eric Weisstein's World of Mathematics, Artin's Constant.
FORMULA
a(n) = Numerator[ Product[ 1 - 1/(Prime[k]*(Prime[k]-1)), {k,1,n}]].
MATHEMATICA
Table[Numerator[Product[1-1/(Prime[k]*(Prime[k]-1)), {k, 1, n}]], {n, 1, 20}]
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Aug 03 2006
STATUS
approved
Denominator of the n-th Artin product.
+10
0
2, 12, 48, 2016, 221760, 6918912, 1881944064, 3079544832, 1558249684992, 1265298744213504, 7591792465281024, 919297051250393088, 36771882050015723520, 13282003796465679335424
OFFSET
1,1
COMMENTS
Artin's constant (A005596) is equal to Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,Infinity}]. n-th Artin product is Product[1-1/(Prime[k]*(Prime[k]-1)),{k,1,n}].
LINKS
Eric Weisstein's World of Mathematics, Artin's Constant.
FORMULA
a(n) = Denominator[ Product[ 1 - 1/(Prime[k]*(Prime[k]-1)), {k,1,n}]].
MATHEMATICA
Table[Denominator[Product[1-1/(Prime[k]*(Prime[k]-1)), {k, 1, n}]], {n, 1, 20}]
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Aug 03 2006
STATUS
approved

Search completed in 0.010 seconds