[go: up one dir, main page]

login
Search: a046798 -id:a046798
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of divisors of n^n, or of A000312(n).
+10
28
1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
OFFSET
0,3
COMMENTS
From Gus Wiseman, May 02 2021: (Start)
Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5)
(2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1)
(3,1,1) (1,1,2,1) (1,1,5,1,1)
(1,1,4,1) (1,5,1,1,1)
(1,2,1,1) (5,1,1,1,1)
(1,4,1,1)
(2,1,1,1)
(4,1,1,1)
The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654.
(End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Harry J. Smith)
FORMULA
a(n) = A000005(A000312(n)). - Enrique Pérez Herrero, Nov 09 2010
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021
EXAMPLE
From Gus Wiseman, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
1 1 1 1 1
2 3 2 5
4 9 4 25
27 8 125
16 625
32 3125
64
128
256
(End)
MATHEMATICA
A062319[n_IntegerQ]:=DivisorSigma[0, n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
Join[{1}, DivisorSigma[0, #^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
PROG
(PARI) je=[]; for(n=0, 200, je=concat(je, numdiv(n^n))); je
(PARI) { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
(PARI) a(n)=local(fm); fm=factor(n); prod(k=1, matsize(fm)[1], fm[k, 2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
(PARI) a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
(Magma) [NumberOfDivisors(n^n): n in [0..60]]; // Vincenzo Librandi, Nov 09 2014
(Python 3.8+)
from math import prod
from sympy import factorint
def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021
CROSSREFS
Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jul 05 2001
STATUS
approved
Sum of divisors of 2^n+1.
+10
14
4, 6, 13, 18, 48, 84, 176, 258, 800, 1302, 2736, 4356, 10928, 20520, 51792, 65538, 174768, 351120, 699056, 1110276, 3100240, 5048232, 11184816, 17041416, 49012992, 82623888, 211053040, 284225796, 727960800, 1494039792, 2863311536, 4301668356, 12611914848, 20788904016
OFFSET
1,1
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..1122 (terms 1..1062 from Amiram Eldar)
FORMULA
a(n) = sigma(2^n+1).
a(n) = A000203(A000051(n)). - Michel Marcus, Nov 24 2013
MATHEMATICA
DivisorSigma[1, 2^Range[50] + 1] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) a(n) = sigma(2^n+1); \\ Michel Marcus, Nov 24 2013
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 04 2002
EXTENSIONS
More terms from Amiram Eldar, Oct 04 2019
STATUS
approved
Number of divisors of 12^n+1.
+10
14
2, 2, 4, 8, 4, 4, 8, 8, 8, 32, 12, 4, 16, 24, 16, 128, 4, 8, 32, 16, 64, 384, 64, 16, 64, 64, 32, 1024, 8, 8, 48, 8, 4, 512, 16, 32, 128, 16, 32, 1536, 16, 32, 64, 32, 16, 4096, 8, 32, 32, 32, 512, 512, 32, 32, 1024, 128, 512, 1536, 192, 64, 1024, 32, 64
OFFSET
0,1
LINKS
FORMULA
a(n) = sigma0(12^n+1) = A000005(A178248(n)).
EXAMPLE
a(4)=4 because 12^4+1 has divisors {1, 89, 233, 20737}.
MAPLE
a:=n->numtheory[tau](12^n+1):
seq(a(n), n=0..100);
PROG
(PARI) a(n) = numdiv(12^n+1);
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Totient of 2^n+1.
+10
13
1, 2, 4, 6, 16, 20, 48, 84, 256, 324, 800, 1364, 3840, 5460, 12544, 19800, 65536, 87380, 186624, 349524, 986880, 1365336, 3345408, 5592404, 16515072, 20250000, 52306176, 84768120, 252645120, 351847488, 760320000, 1431655764, 4288266240
OFFSET
0,2
LINKS
Max Alekseyev, Table of n, a(n) for n = 0..1122 (terms 0..300 from Robert Israel; terms 301..1062 from Amiram Eldar)
FORMULA
a(n) = A000010(A000051(n)).
EXAMPLE
It is a power of 2 iff n is a Fermat prime.
MAPLE
seq(numtheory:-phi(2^n+1), n=0..50); # Robert Israel, Aug 12 2015
MATHEMATICA
Table[EulerPhi[2^n + 1], {n, 35}] (* Vincenzo Librandi, Aug 12 2015 *)
PROG
(PARI) vector(40, n, eulerphi(2^n+1)) \\ Michel Marcus, Aug 12 2015
(Magma) [EulerPhi(2^n+1) : n in [1..40]]; // Vincenzo Librandi, Aug 12 2015
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 03 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 12 2015
STATUS
approved
a(n) is the number of divisors of 10^n + 1.
+10
13
2, 2, 2, 8, 4, 4, 4, 4, 4, 32, 8, 24, 8, 8, 16, 128, 32, 16, 8, 4, 16, 192, 16, 32, 8, 32, 8, 128, 16, 8, 128, 4, 16, 384, 16, 32, 64, 16, 8, 768, 16, 8, 128, 16, 16, 4096, 16, 16, 512, 16, 128, 256, 16, 4, 64, 768, 32, 64, 32, 16, 64, 8, 8, 3072, 8, 64, 256, 4, 16, 1024, 2048, 8, 32, 16, 128, 2048, 64, 3072, 128, 16
OFFSET
0,1
COMMENTS
a(n) is even because 10^n + 1 is not a square number.
LINKS
FORMULA
a(n) = A000005(A000533(n)).
MATHEMATICA
a[0] = 2; a[n_] := DivisorSigma[0, 10^n + 1]; Array[a, 60, 0] (* Amiram Eldar, Jun 01 2021 *)
PROG
(PARI) a(n) = numdiv(10^n+1);
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 01 2021
STATUS
approved
Number of divisors of 3^n+1.
+10
11
2, 3, 4, 6, 4, 6, 8, 6, 8, 24, 12, 12, 8, 6, 16, 48, 4, 24, 16, 12, 8, 72, 16, 6, 64, 24, 16, 96, 16, 24, 48, 12, 4, 96, 16, 24, 16, 24, 16, 192, 32, 12, 128, 6, 32, 768, 16, 24, 16, 24, 128, 384, 16, 12, 32, 96, 64, 192, 16, 12, 128, 12, 32, 4608, 4, 24, 64
OFFSET
0,1
LINKS
FORMULA
a(n) = sigma0(3^n+1) = A000005(A034472(n)).
EXAMPLE
a(4)=4 because 3^4+1 has divisors {1, 2, 41, 82}.
MAPLE
a:=n->numtheory[tau](3^n+1):
seq(a(n), n=0..100);
MATHEMATICA
DivisorSigma[0, 3^Range[0, 100]+1] (* Paolo Xausa, Oct 15 2023 *)
PROG
(PARI) a(n) = numdiv(3^n+1); \\ Michel Marcus, Oct 14 2023
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 13 2023
STATUS
approved
Number of divisors of 4^n-1.
+10
11
2, 4, 6, 8, 8, 24, 8, 16, 32, 48, 16, 96, 8, 64, 96, 32, 8, 512, 8, 192, 144, 128, 16, 768, 128, 128, 160, 256, 64, 4608, 8, 128, 384, 128, 512, 8192, 32, 128, 192, 768, 32, 9216, 32, 1024, 4096, 512, 64, 6144, 32, 8192, 1536, 1024, 64, 10240, 3072, 2048, 384
OFFSET
1,1
LINKS
FORMULA
a(n) = sigma0(4^n-1) = A000005(A024036(n)).
a(n) = A046801(2*n) = A046798(n) * A046801(n). - Max Alekseyev, Jan 07 2024
EXAMPLE
a(4)=8 because 4^4-1 has divisors {1, 3, 5, 15, 17, 51, 85, 255}.
MAPLE
a:=n->numtheory[tau](4^n-1):
seq(a(n), n=1..100);
MATHEMATICA
DivisorSigma[0, 4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
PROG
(PARI) a(n) = numdiv(4^n-1);
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 14 2023
STATUS
approved
Number of divisors of 11^n+1.
+10
11
2, 6, 4, 18, 4, 12, 16, 12, 8, 48, 8, 96, 16, 48, 32, 144, 8, 48, 32, 96, 16, 72, 16, 96, 128, 48, 8, 240, 64, 48, 64, 96, 16, 4608, 64, 1152, 128, 24, 16, 1152, 32, 48, 512, 24, 64, 3072, 64, 96, 32, 192, 64, 1152, 8, 96, 512, 6144, 128, 2304, 64, 96, 256, 48
OFFSET
0,1
LINKS
FORMULA
a(n) = sigma0(11^n+1) = A000005(A034524(n)).
EXAMPLE
a(4)=4 because 11^4+1 has divisors {1, 2, 7321, 14642}.
MAPLE
a:=n->numtheory[tau](11^n+1):
seq(a(n), n=0..100);
PROG
(PARI) a(n) = numdiv(11^n+1);
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 16 2023
STATUS
approved
Number of divisors of 4^n+1.
+10
10
2, 2, 2, 4, 2, 6, 4, 8, 2, 16, 4, 8, 8, 16, 4, 48, 4, 16, 16, 16, 4, 64, 8, 32, 8, 64, 8, 64, 8, 8, 16, 32, 4, 64, 12, 96, 32, 32, 16, 768, 8, 32, 32, 32, 16, 1536, 4, 16, 8, 64, 64, 512, 4, 16, 64, 96, 32, 256, 8, 128, 64, 64, 16, 1024, 4, 768, 128, 64, 16
OFFSET
0,1
LINKS
FORMULA
a(n) = sigma0(4^n+1) = A000005(A052539(n)).
a(n) = A046798(2*n). - Max Alekseyev, Jan 08 2024
EXAMPLE
a(3)=4 because 4^3+1 has divisors {1, 5, 13, 65}.
MAPLE
a:=n->numtheory[tau](4^n+1):
seq(a(n), n=0..100);
MATHEMATICA
DivisorSigma[0, 4^Range[0, 100]+1] (* Paolo Xausa, Oct 14 2023 *)
PROG
(PARI) a(n) = numdiv(4^n+1);
(Python)
from sympy import divisor_count
def A366606(n): return divisor_count((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 14 2023
STATUS
approved
Number of divisors of 5^n+1.
+10
9
2, 4, 4, 12, 4, 8, 8, 16, 8, 32, 16, 32, 8, 16, 8, 96, 8, 16, 32, 32, 16, 576, 16, 16, 16, 32, 24, 320, 8, 16, 128, 32, 16, 384, 64, 128, 64, 32, 16, 192, 32, 64, 64, 64, 8, 512, 8, 32, 32, 128, 128, 768, 32, 32, 64, 128, 128, 384, 8, 64, 64, 64, 16, 24576, 16
OFFSET
0,1
LINKS
FORMULA
a(n) = sigma0(5^n+1) = A000005(A034474(n)).
EXAMPLE
a(3)=12 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
MAPLE
a:=n->numtheory[tau](5^n+1):
seq(a(n), n=0..100);
PROG
(PARI) a(n) = numdiv(5^n+1);
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 14 2023
STATUS
approved

Search completed in 0.011 seconds