[go: up one dir, main page]

login
Search: a046099 -id:a046099
     Sort: relevance | references | number | modified | created      Format: long | short | data
Non-cubefree numbers n such that 2n+1 is also non-cubefree (A046099).
+20
2
40, 256, 312, 472, 688, 904, 1120, 1200, 1312, 1336, 1552, 1768, 1984, 2187, 2200, 2312, 2416, 2456, 2632, 2848, 2875, 3064, 3280, 3312, 3429, 3496, 3712, 3928, 3944, 4144, 4312, 4360, 4576, 4792, 5008, 5224, 5312, 5440, 5562, 5656, 5872, 6088, 6250, 6304, 6312, 6345, 6520, 6655, 6688, 6736, 6952
OFFSET
1,1
COMMENTS
The probability that a random integer is cubefree is 1/zeta(3) (see A088453).
LINKS
EXAMPLE
312 is there because 2^3 divides 312 and 5^3 divides 312*2+1.
CROSSREFS
Cf. A005384 (n and 2n+1 prime), A046099, A088453, A111153 (n and 2n+1 semiprime), A117204 (n and 2n+1 squarefree), A115228.
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 03 2006
EXTENSIONS
Edited by Don Reble, Mar 05 2006
2875 inserted by R. J. Mathar, Dec 08 2015
STATUS
approved
Cubes of primes.
+10
180
8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
OFFSET
1,1
COMMENTS
Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021
REFERENCES
Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
LINKS
Xavier Gourdon and Pascal Sebah, Some Constants from Number theory.
Eric Weisstein's World of Mathematics, Prime Power.
Wikipedia, p-group, Classification.
FORMULA
n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)
EXAMPLE
a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
MATHEMATICA
Array[Prime[ # ]^3&, 5! ] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
PROG
(Sage)
[p**3 for p in prime_range(100)] # Zerinvary Lajos, May 15 2007
(Haskell)
a030078 = a000578 . a000040
a030078_list = map a000578 a000040_list -- Reinhard Zumkeller, May 26 2012
(PARI) a(n)=prime(n)^3 \\ Charles R Greathouse IV, Mar 20 2013
(Magma) [p^3: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 27 2014
(Python)
from sympy import prime, primerange
def aupton(terms): return [p**3 for p in primerange(1, prime(terms)+1)]
print(aupton(35)) # Michael S. Branicky, Aug 27 2021
CROSSREFS
Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.
KEYWORD
nonn,easy
STATUS
approved
Cubefree numbers: numbers that are not divisible by any cube > 1.
+10
178
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
OFFSET
1,2
COMMENTS
Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - Michael Somos, Sep 22 2005
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - Gerard P. Michon, May 06 2009
The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - Amiram Eldar, Mar 12 2021
From Amiram Eldar, Feb 26 2024: (Start)
Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.
Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Richard C. Orr, On the Schnirelmann density of the sequence of k-free integers, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint, arXiv:1511.03860 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Cubefree.
FORMULA
A066990(a(n)) = a(n). - Reinhard Zumkeller, Jun 25 2009
A212793(a(n)) = 1. - Reinhard Zumkeller, May 27 2012
A124010(a(n),k) <= 2 for all k = 1..A001221(a(n)). - Reinhard Zumkeller, Mar 04 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022
MAPLE
isA004709 := proc(n)
local p;
for p in ifactors(n)[2] do
if op(2, p) > 2 then
return false;
end if;
end do:
true ;
end proc:
MATHEMATICA
Select[Range[6!], FreeQ[FactorInteger[#], {_, k_ /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
PROG
(PARI) {a(n)= local(m, c); if(n<2, n==1, c=1; m=1; while( c<n, m++; if( 3>vecmax(factor(m)[, 2]), c++)); m)} /* Michael Somos, Sep 22 2005 */
(Haskell)
a004709 n = a004709_list !! (n-1)
a004709_list = filter ((== 1) . a212793) [1..]
-- Reinhard Zumkeller, May 27 2012
(Python)
from sympy.ntheory.factor_ import core
def ok(n): return core(n, 3) == n
print(list(filter(ok, range(1, 86)))) # Michael S. Branicky, Aug 16 2021
(Python)
from sympy import mobius, integer_nthroot
def A004709(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 05 2024
CROSSREFS
Complement of A046099.
Cf. A005117 (squarefree), A067259 (cubefree but not squarefree), A046099 (cubeful).
Cf. A160112, A160113, A160114 & A160115: On the number of cubefree integers. - Gerard P. Michon, May 06 2009
Cf. A030078.
KEYWORD
nonn,easy
AUTHOR
Steven Finch, Jun 14 1998
STATUS
approved
Moebius transform applied twice to sequence 1,0,0,0,....
(Formerly M0198)
+10
66
1, -2, -2, 1, -2, 4, -2, 0, 1, 4, -2, -2, -2, 4, 4, 0, -2, -2, -2, -2, 4, 4, -2, 0, 1, 4, 0, -2, -2, -8, -2, 0, 4, 4, 4, 1, -2, 4, 4, 0, -2, -8, -2, -2, -2, 4, -2, 0, 1, -2, 4, -2, -2, 0, 4, 0, 4, 4, -2, 4, -2, 4, -2, 0, 4, -8, -2, -2, 4, -8, -2, 0, -2, 4, -2, -2, 4, -8, -2, 0, 0
OFFSET
1,2
COMMENTS
|a(n)| is the number of ways to write n as a product of 2 squarefree numbers (i.e., number of ways to write n = x*y with 1 <= x <= n, 1 <= y <= n, x and y squarefree). - Benoit Cloitre, Jan 01 2003
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Adolf Piltz, Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6.
N. J. A. Sloane, Transforms.
Wikipedia, Adolf Piltz.
FORMULA
Dirichlet g.f.: 1/zeta(s)^2.
Multiplicative function with a(p^e) = binomial(2, e)*(-1)^e for p prime and e >= 0.
a(n) = Sum_{d|n} mu(d)*mu(n/d). - Benoit Cloitre, Apr 05 2002
a(n^2) = A008683(n)^2. a(A005117(n)) = (-2)^A001221(A005117(n)). - Enrique Pérez Herrero, Jun 27 2011 [Misrendering of contribution rectified by Peter Munn, Mar 06 2020]
a(n) is the Dirichlet inverse of A000005, which means a(n) = -Sum_{d|n, d<n} A000005(n/d)*a(d). - Enrique Pérez Herrero, Jan 19 2013
a(n) = 0 if n is not cubefree: A046099, otherwise sign(a(n)) = lambda(n), where lambda is A008836. - Enrique Pérez Herrero, Jan 19 2013
Dirichlet g.f. of |a(n)|: zeta(s)^2/zeta(2s)^2 (conjectured). - Ralf Stephan, Jul 05 2013. The conjecture is correct because 1+Sum_{e>=1} binomial(2,e)/p^(e*s) = (p^s+1)^2/p^2s, whose product over p is zeta(s)^2/zeta(2s)^2. - Michael Shamos
a(n) = Sum_{k=1..A000005(n)} A225817(n,k)*A225817(n,n+1-k). - Reinhard Zumkeller, Jul 30 2013
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} tau(k)*A(x^k), where tau = A000005. - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ (n/zeta(2)^2) * (log(n) + 2*gamma - 1 - 4*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 24 2023
EXAMPLE
G.f. = x - 2*x^2 - 2*x^3 + x^4 - 2*x^5 + 4*x^6 - 2*x^7 + x^9 + 4*x^10 + ...
We have a(3^1) = C(2, 1)*(-1)^1 = -2, a(3^2) = C(2, 2)*(-1)^2 = 1, and a(3^m) = C(2, m)*(-1)^m = 0 for m >= 3. - Petros Hadjicostas, Jun 07 2019
MAPLE
möbius := proc(a) local b, i, mo: b := NULL:
mo := (m, n) -> `if`(irem(m, n) = 0, numtheory:-mobius(m/n), 0);
for i to nops(a) do b := b, add(mo(i, j)*a[j], j=1..i) od: [b] end:
(möbius@@2)([1, seq(0, i=1..80)]); # Peter Luschny, Sep 08 2017
MATHEMATICA
f[n_] := Plus @@ Times @@@ (MoebiusMu[{#, n/#}] & /@ Divisors@n); Array[f, 105] (* Robert G. Wilson v *)
a[n_] := DivisorSum[n, MoebiusMu[#]*MoebiusMu[n/#]&]; Array[a, 80] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, (1 - X)^2)[n])}; /* Michael Somos, Nov 15 2002 */
(PARI) {a(n) = if(n<1, 0, sumdiv(n, d, moebius(d) * moebius(n/d)))}; /* Michael Somos, Nov 15 2002 */
(PARI) a(n)=if(n>1, my(f=factor(n)[, 2], s=sum(i=1, #f, f[i]==1)); if(vecmax(f)>2, 0, (-1)^s<<s), 1) \\ Charles R Greathouse IV, Jun 28 2011
(Haskell)
a007427 n = sum $ zipWith (*) mds $ reverse mds where
mds = a225817_row n
-- Reinhard Zumkeller, Jul 30 2013
(Python)
from math import prod, comb
from sympy import factorint
def A007427(n): return prod(-comb(2, e) if e&1 else comb(2, e) for e in factorint(n).values()) # Chai Wah Wu, Jul 05 2024
CROSSREFS
Dirichlet inverse of A000005, Mobius transform of A008683.
KEYWORD
sign,easy,nice,mult
EXTENSIONS
Added a proof of Stephan's conjecture about the Dirichlet g.f. of |a(n)|.
STATUS
approved
Number of factorizations of n with integer alternating product.
+10
39
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 6, 1, 1, 1, 2, 1, 1, 1, 7
OFFSET
1,4
COMMENTS
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
LINKS
PlanetMath, alternating sum
FORMULA
a(2^n) = A344607(n).
a(n^2) = A347458(n).
EXAMPLE
The factorizations for n = 4, 16, 36, 48, 54, 64, 108:
(4) (16) (36) (48) (54) (64) (108)
(2*2) (4*4) (6*6) (2*4*6) (2*3*9) (8*8) (2*6*9)
(2*2*4) (2*2*9) (3*4*4) (3*3*6) (2*4*8) (3*6*6)
(2*2*2*2) (2*3*6) (2*2*12) (4*4*4) (2*2*27)
(3*3*4) (2*2*2*2*3) (2*2*16) (2*3*18)
(2*2*3*3) (2*2*4*4) (3*3*12)
(2*2*2*2*4) (2*2*3*3*3)
(2*2*2*2*2*2)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[facs[n], IntegerQ@*altprod]], {n, 100}]
PROG
(PARI) A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023
CROSSREFS
Positions of 1's are A005117, complement A013929.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The restriction to powers of 2 is A344607.
The even-length case is A347438, also the case of alternating product 1.
The reciprocal version is A347439.
Allowing any alternating product < 1 gives A347440.
The odd-length case is A347441.
The reverse version is A347442.
The additive version is A347446, ranked by A347457.
Allowing any alternating product >= 1 gives A347456.
The restriction to perfect squares is A347458, reciprocal A347459.
The ordered version is A347463.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors of n (reverse: A071322).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 06 2021
EXTENSIONS
Data section extended up to a(108) by Antti Karttunen, Oct 22 2023
STATUS
approved
Number of unordered factorizations of n with alternating product 1.
+10
37
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
OFFSET
1,16
COMMENTS
Also the number of unordered factorizations of n with alternating sum 0.
Also the number of unordered factorizations of n with all even multiplicities.
This is the even-length case of A347437, the odd-length case being A347441.
An unordered factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
LINKS
PlanetMath, alternating sum
FORMULA
a(2^n) = A035363(n).
a(n^2) = A001055(n).
EXAMPLE
The a(n) factorizations for n = 16, 64, 144, 256, 576:
4*4 8*8 12*12 16*16 24*24
2*2*2*2 2*2*4*4 2*2*6*6 2*2*8*8 3*3*8*8
2*2*2*2*2*2 3*3*4*4 4*4*4*4 4*4*6*6
2*2*2*2*3*3 2*2*2*2*4*4 2*2*12*12
2*2*2*2*2*2*2*2 2*2*2*2*6*6
2*2*3*3*4*4
2*2*2*2*2*2*3*3
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[facs[n], altprod[#]==1&]], {n, 100}]
PROG
(PARI) A347438(n, m=n, k=0, t=1) = if(1==n, (1==t), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A347438(n/d, d, 1-k, t*(d^((-1)^k))))); (s)); \\ Antti Karttunen, Oct 30 2021
CROSSREFS
Positions of zeros are A000037.
Positions of nonzero terms are A000290.
The restriction to perfect squares is A001055 (ordered: A273013).
The restriction to powers of 2 is A035363.
The additive version is A119620, ranked by A028982.
Positions of non-1's are A213367 \ {1}.
Positions of 1's are A280076 = {1} \/ A001248.
Sorted first positions are 1, 2, and all terms of A330972 squared.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
Allowing any integer alternating product gives A347437.
Allowing any integer reciprocal alternating product gives A347439.
Allowing any alternating product < 1 gives A347440.
Allowing any alternating product >= 1 gives A347456.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime factors.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 06 2021
EXTENSIONS
Name and comments clarified (with unordered) by Jacob Sprittulla, Oct 05 2021
STATUS
approved
Characteristic function of cubefree numbers, A004709.
+10
33
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
The following four statements are equivalent: m is cubefree; a(m) = 1; m = A004709(k) for some k; A124010(m,k) <= 2 for all k = 1..A001221(m). - Reinhard Zumkeller, Mar 04 2015
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000 (first 10000 terms from Reinhard Zumkeller)
Eric Weisstein's World of Mathematics, Cubefree.
FORMULA
a(A004709(n)) = 1, a(A046099(n)) = 0;
a(n) = A000007(A000005(n) - A073184(n)).
a(n) = abs(A053864(n)).
Multiplicative with a(p^e) = 1 if e<=2, =0 if e>=3. - R. J. Mathar, Dec 17 2012
Sum_{n>0} a(n)/n^s = Product_{p prime} (1+p^(-s)+p^(-2s)) = zeta(s) / zeta(3s). - Ralf Stephan, Jul 07 2013
a(n) = Sum_{d|n} A008966(n/d) * A307423(d). - Antti Karttunen, Jul 14 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/zeta(3) (A088453). - Amiram Eldar, Jul 23 2022
Dirichlet g.f.: zeta(s)/zeta(3*s). - Amiram Eldar, Dec 27 2022
MATHEMATICA
Table[Boole[Max[FactorInteger[n][[All, 2]]] < 3], {n, 1, 100}] (* Geoffrey Critzer, Feb 25 2015 *)
PROG
(Haskell)
a212793 = cubeFree a000040_list 0 0 where
cubeFree ps'@(p:ps) q e x
| e > 2 = 0
| x == 1 = 1
| r > 0 = cubeFree ps p 0 x
| otherwise = cubeFree ps' p (e + 1) x' where (x', r) = divMod x p
-- Reinhard Zumkeller, Mar 04 2015, May 27 2012
(PARI) a(n) = {f = factor(n); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); } \\ Michel Marcus, Feb 10 2015
(PARI) A212793(n) = factorback(apply(e->(e<=2), factor(n)[, 2])); \\ Antti Karttunen, Jul 14 2022
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, May 27 2012
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Jul 14 2022
STATUS
approved
Number of factorizations of n with integer reciprocal alternating product.
+10
29
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 6, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 5
OFFSET
1,16
COMMENTS
All of these factorizations have an even number of factors, so their reverse-alternating product is also an integer.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
The value of a(n) does not depend solely on the prime signature of n. See the example comparing a(144) and a(400). - Antti Karttunen, Jul 28 2024
LINKS
FORMULA
a(2^n) = A027187(n).
a(n^2) = A347459(n).
EXAMPLE
The a(n) factorizations for
n = 16, 36, 64, 72, 128, 144:
a(n) = 3, 4, 6, 5, 7, 11
--------------------------------------------------------------------------------
2*8 6*6 8*8 2*36 2*64 2*72
4*4 2*18 2*32 3*24 4*32 3*48
2*2*2*2 3*12 4*16 6*12 8*16 4*36
2*2*3*3 2*2*2*8 2*2*3*6 2*2*4*8 6*24
2*2*4*4 2*3*3*4 2*4*4*4 12*12
2*2*2*2*2*2 2*2*2*16 2*2*6*6
2*2*2*2*2*4 2*3*3*8
3*3*4*4
2*2*2*18
2*2*3*12
2*2*2*2*3*3
From Antti Karttunen, Jul 28 2024 (Start)
For n=400, there are 12 such factorizations:
2*200
4*100
5*80
10*40
20*20
2*2*2*50
2*2*5*20
2*2*10*10
2*4*5*10
2*5*5*8
4*4*5*5
2*2*2*2*5*5.
Note that 400 = 2^4 * 5^2 has the same prime signature as 144 = 2^4 * 3^2. 400 = 2*4*5*10 is the factorization for which there is no analogous factorization of 144, as 2*3*4*6 doesn't satisfy the condition of having an integer reciprocal alternating product.
(End)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
recaltprod[q_]:=Product[q[[i]]^(-1)^i, {i, Length[q]}];
Table[Length[Select[facs[n], IntegerQ[recaltprod[#]]&]], {n, 100}]
PROG
(PARI) A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
(PARI) A347439(n, m=0, ap=1, e=1) = if(1==n, 1==denominator(ap), sumdiv(n, d, if(d>1 && d>=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
CROSSREFS
Positions of 0's are A005117 \ {1}.
Positions of non-0's are 1 and A013929.
The restriction to powers of 2 is A027187, reverse A035363.
Positions of 1's are 1 and A082293.
The additive version is A119620, ranked by A347451 and A028982.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reciprocal version is A347437.
The reverse version is A347438.
Allowing any alternating product < 1 gives A347440.
The non-reciprocal reverse version is A347442.
Allowing any alternating product >= 1 gives A347456.
The restriction to perfect squares is A347459, non-reciprocal A347458.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 07 2021
EXTENSIONS
Data section extended up to a(108) by Antti Karttunen, Jul 28 2024
STATUS
approved
Number of ordered factorizations of n with integer alternating product.
+10
26
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 7, 1, 4, 1, 4, 1, 1, 1, 6, 2, 1, 3, 4, 1, 1, 1, 11, 1, 1, 1, 18, 1, 1, 1, 6, 1, 1, 1, 4, 4, 1, 1, 20, 2, 4, 1, 4, 1, 6, 1, 6, 1, 1, 1, 8, 1, 1, 4, 26, 1, 1, 1, 4, 1, 1, 1, 35, 1, 1, 4, 4, 1, 1, 1, 20, 7, 1, 1, 8, 1, 1, 1, 6, 1, 8, 1, 4, 1, 1, 1, 32, 1, 4, 4, 18
OFFSET
1,4
COMMENTS
An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
FORMULA
a(n) = A347048(n) + A347049(n).
EXAMPLE
The ordered factorizations for n = 4, 8, 12, 16, 24, 32, 36:
4 8 12 16 24 32 36
2*2 4*2 6*2 4*4 12*2 8*4 6*6
2*2*2 2*2*3 8*2 2*2*6 16*2 12*3
3*2*2 2*2*4 3*2*4 2*2*8 18*2
2*4*2 4*2*3 2*4*4 2*2*9
4*2*2 6*2*2 4*2*4 2*3*6
2*2*2*2 4*4*2 2*6*3
8*2*2 3*2*6
2*2*4*2 3*3*4
4*2*2*2 3*6*2
2*2*2*2*2 4*3*3
6*2*3
6*3*2
9*2*2
2*2*3*3
2*3*3*2
3*2*2*3
3*3*2*2
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[Join@@Permutations/@facs[n], IntegerQ[altprod[#]]&]], {n, 100}]
PROG
(PARI) A347463(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if(d>1, A347463(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
CROSSREFS
Positions of 2's are A001248.
Positions of 1's are A005117.
The restriction to powers of 2 is A116406.
The even-length case is A347048
The odd-length case is A347049.
The unordered version is A347437, reciprocal A347439, reverse A347442.
The case of partitions is A347446, reverse A347445, ranked by A347457.
A001055 counts factorizations (strict A045778, ordered A074206).
A046099 counts factorizations with no alternating permutations.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations, ordered A174725.
A339890 counts odd-length factorizations, ordered A174726.
A347438 counts factorizations with alternating product 1.
A347460 counts possible alternating products of factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 07 2021
EXTENSIONS
Data section extended up to a(100) by Antti Karttunen, Jul 28 2024
STATUS
approved
Biquadrateful numbers.
+10
25
16, 32, 48, 64, 80, 81, 96, 112, 128, 144, 160, 162, 176, 192, 208, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 384, 400, 405, 416, 432, 448, 464, 480, 486, 496, 512, 528, 544, 560, 567, 576, 592, 608, 624, 625, 640, 648, 656, 672, 688, 704
OFFSET
1,1
COMMENTS
The convention in the OEIS is that squareful, cubeful (A046099), biquadrateful, ... mean the same as "not squarefree" etc., while 2- or square-full, 3- or cube-full (A036966), 4-full (A036967) are used for Golomb's notion of powerful numbers (A001694, see references there), when each prime factor occurs to a power > 1. - M. F. Hasler, Feb 12 2008
Also solutions to equation tau_{-3}(n)=0, where tau_{-3} is A007428. - Enrique Pérez Herrero, Jan 19 2013
Sum_{n>0} 1/a(n)^s = Zeta(s) - Zeta(s)/Zeta(4s). - Enrique Pérez Herrero, Jan 21 2013
A051903(a(n)) > 3. - Reinhard Zumkeller, Sep 03 2015
The asymptotic density of this sequence is 1 - 1/zeta(4) = 1 - 90/Pi^4 = 0.076061... - Amiram Eldar, Jul 09 2020
LINKS
Eric Weisstein's World of Mathematics, Biquadratefree.
MAPLE
with(NumberTheory):
isBiquadrateful := n -> is(denom(Radical(n) / LargestNthPower(n, 2)) <> 1):
select(isBiquadrateful, [`$`(1..704)]); # Peter Luschny, Jul 12 2022
MATHEMATICA
lst={}; Do[a=0; Do[If[FactorInteger[m][[n, 2]]>3, a=1], {n, Length[FactorInteger[m]]}]; If[a==1, AppendTo[lst, m]], {m, 10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *)
Select[Range[1000], Max[Transpose[FactorInteger[#]][[2]]]>3&] (* Harvey P. Dale, May 25 2014 *)
PROG
(Haskell)
a046101 n = a046101_list !! (n-1)
a046101_list = filter ((> 3) . a051903) [1..]
-- Reinhard Zumkeller, Sep 03 2015
(PARI) is(n)=n>9 && vecmax(factor(n)[, 2])>3 \\ Charles R Greathouse IV, Sep 03 2015
(Python)
from sympy import mobius, integer_nthroot
def A046101(n):
def f(x): return n+sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x, 4)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 05 2024
KEYWORD
nonn
STATUS
approved

Search completed in 0.044 seconds