Displaying 61-70 of 82 results found.
a(n) = Sum_{d|n} phi(d) * mu(d) * mu(n/d).
+10
2
1, -2, -3, 1, -5, 6, -7, 0, 2, 10, -11, -3, -13, 14, 15, 0, -17, -4, -19, -5, 21, 22, -23, 0, 4, 26, 0, -7, -29, -30, -31, 0, 33, 34, 35, 2, -37, 38, 39, 0, -41, -42, -43, -11, -10, 46, -47, 0, 6, -8, 51, -13, -53, 0, 55, 0, 57, 58, -59, 15, -61, 62, -14, 0, 65
COMMENTS
Abs(a(n)) <= n.
a(n) = n iff n is in A030229. (End)
FORMULA
a(n) = Sum_{k=1..n} mu(gcd(n,k)) * mu(n/gcd(n,k)).
a(1) = 1; a(n) = -Sum_{d|n, d < n} A003967(n/d) * a(d).
a(n) = Sum_{d|n} mu(n/d) * A097945(d).
Multiplicative with a(p^e) = -p if e=1, p-1 if e=2, and 0 otherwise. - Amiram Eldar, Feb 19 2021
MATHEMATICA
Table[Sum[EulerPhi[d] MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 65}]
Table[Sum[MoebiusMu[GCD[n, k]] MoebiusMu[n/GCD[n, k]], {k, n}], {n, 65}]
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d)*moebius(d)*moebius(n/d)); \\ Michel Marcus, Feb 17 2021
a(n) = Sum_{d|n} mu(d)*mu(n/d)*d^n.
+10
2
1, -5, -28, 16, -3126, 47450, -823544, 0, 19683, 10009766650, -285311670612, -2176786432, -302875106592254, 11112685048647250, 437893920912786408, 0, -827240261886336764178, -101560344088905, -1978419655660313589123980, -100000000000001048576
FORMULA
If p is prime, a(p) = -1 - p^p.
MATHEMATICA
a[n_] := DivisorSum[n, MoebiusMu[#] * MoebiusMu[n/#] * #^n &]; Array[a, 20] (* Amiram Eldar, Aug 24 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(d)*moebius(n/d)*d^n);
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
COMMENTS
This sequence is unbounded since by the Chinese Remainder Theorem there are arbitrarily long runs of consecutive numbers that are not cubefree.
The first occurrence of a(n) = 1, 2, ... is at n = 1, 7, 68, 1145, 18825, 15003967, ...
FORMULA
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = zeta(3) ( A002117).
MATHEMATICA
cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Differences @ Select[Range[100], cubeFreeQ]
PROG
(PARI)
A003557(n) = (n/factorback(factorint(n)[, 1]));
isA004709(n) = issquarefree( A003557(n));
A349236list(first_n) = { my(v=vector(first_n), k=0, e=1); for(n=2, oo, if(isA004709(n), k++; v[k] = n-e; e = n); if(#v==k, return(v))); }; \\ Antti Karttunen, Nov 11 2021
Heinz numbers of integer partitions with at least one part divisible by 3.
+10
2
5, 10, 13, 15, 20, 23, 25, 26, 30, 35, 37, 39, 40, 45, 46, 47, 50, 52, 55, 60, 61, 65, 69, 70, 73, 74, 75, 78, 80, 85, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 110, 111, 113, 115, 117, 120, 122, 125, 130, 135, 137, 138, 140, 141, 143, 145, 146, 148, 150
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms together with their prime indices begin:
5: {3}
10: {1,3}
13: {6}
15: {2,3}
20: {1,1,3}
23: {9}
25: {3,3}
26: {1,6}
30: {1,2,3}
35: {3,4}
37: {12}
39: {2,6}
40: {1,1,1,3}
45: {2,2,3}
46: {1,9}
47: {15}
50: {1,3,3}
52: {1,1,6}
55: {3,5}
60: {1,1,2,3}
MATHEMATICA
Select[Range[100], MemberQ[PrimePi/@First/@If[#==1, {}, FactorInteger[#]]/3, _?IntegerQ]&]
CROSSREFS
This sequence ranks the partitions counted by A295341, compositions A335464.
A046099 lists non-cubefree numbers.
A354234 counts partitions of n with at least one part divisible by k.
Numbers whose prime factorization has exactly one exponent that is larger than 2.
+10
2
8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 343, 344
COMMENTS
Subsequence of A046099 and first differs from it at n = 35: A046099(35) = 216 = 2^3 * 3^3 is not a term of this sequence.
Numbers k such that the powerful part of k, A057521(k), is a prime power whose exponent is larger than 2 ( A246549).
The asymptotic density of this sequence is (1/zeta(3)) * Sum_{p prime} 1/(p^3-1) = A286229 / A002117 = 0.16148833663564192901... .
EXAMPLE
8 = 2^3 is a term since its prime factorization has exactly one exponent, 3, that is larger than 2.
MATHEMATICA
q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 2 &)] == 1; Select[Range[350], q]
PROG
(PARI) is(k) = #select(x -> x > 2, factor(k)[, 2]) == 1;
16, 24, 32, 40, 48, 54, 56, 72, 80, 81, 88, 96, 104, 108, 112, 120, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 344, 351, 352, 360
FORMULA
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(3*s) - zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Aug 31 2024
MATHEMATICA
With[{m = 10}, Select[Complement[Range[m^3], Range[m]^3], AnyTrue[FactorInteger[#][[;; , 2]], #1 > 2 &] &]] (* Amiram Eldar, Aug 31 2024 *)
Sum of the cubes of the first n noncubefree numbers.
+10
1
0, 512, 4608, 18432, 38115, 70883, 134883, 245475, 402939, 578555, 840699, 1213947, 1725947, 2257388, 2938860, 3823596, 4948460, 6208172, 7613100, 9341100, 11294225, 13391377, 15851752, 18367208, 21353192, 24865000, 28961000
FORMULA
a(n) ~ c * n^4, where c = (zeta(3)/(zeta(3)-1))^3/4 = 52.6373493984... . - Amiram Eldar, Feb 20 2024
EXAMPLE
a(10) = 8^3 + 16^3 + 24^3 + 27^3 + 32^3 + 40^3 + 48^3 + 54^3 + 56^3 + 64^3 = 840699.
MATHEMATICA
noncubeFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] > 2; Join[{0}, Accumulate[Select[Range[200], noncubeFreeQ]^3]] (* Amiram Eldar, Feb 20 2024 *)
Indices of Fibonacci numbers that are not cubefree.
+10
1
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 125, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 250, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324
COMMENTS
Conjecture: all terms are multiples of 6 or 125. - Harvey P. Dale, Apr 28 2020
The conjecture is false. The counterexamples are 392, 784, 1183, 1210, .... . - Amiram Eldar, Oct 16 2023
EXAMPLE
Fibonacci(125) = 5^3 * 3001 * 158414167964045700001 = A000045(125) is not cubefree, which adds 125 to the sequence.
MATHEMATICA
Select[Range[350], Max[FactorInteger[Fibonacci[#]][[All, 2]]]>2&] (* Harvey P. Dale, Apr 28 2020 *)
PROG
(Haskell)
import Data.List (findIndices)
a175130 n = a175130_list !! (n-1)
a175130_list = map (+ 1) $ findIndices ((== 0) . a212793) $ tail a000045_list
Dirichlet inverse of Ramanujan's L-series ( A000594).
+10
1
1, 24, -252, 2048, -4830, -6048, 16744, 0, 177147, -115920, -534612, -516096, 577738, 401856, 1217160, 0, 6905934, 4251528, -10661420, -9891840, -4219488, -12830688, -18643272, 0, 48828125, 13865712, 0, 34291712, -128406630, 29211840
COMMENTS
Although it is conjectured that A000594(n) is never 0 here a(n)=0 for infinitely many n. Namely a(n)=0 iff n is not cubefree (n is in A046099).
REFERENCES
B. Cloitre, On the order of absolute convergence of Dirichlet series and the Grand Riemann hypothesis, in preparation 2010-2011 (unpublished as of August 2018).
FORMULA
For Re(s)>13/2 we have sum_{n>0}a(n)/n^s*sum_{n>0} A000594(n)/n^s=1. If n is squarefree then a(n)=(-1)^omega(n)* A000594(n).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = -Sum[a[d]*RamanujanTau[n/d], {d, Most[Divisors[n]]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 18 2013 *)
PROG
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, ramanujantau(n)))} \\ Andrew Howroyd, Aug 05 2018
a(n) is the smallest prime p such that none of p + 1, p + 2,... p + n are cubefree.
+10
1
7, 79, 4373, 885623, 146447621, 309763486247, 151536553447871
EXAMPLE
a(1) = 7 because 7 is prime and none of 7 + 1 = 8 = (2*2*2) is cubefree.
a(2) = 79 because 79 is prime and none of 79 + 1 = 80 = (2*2*2)*10, 79 + 2 = 81 = (3*3*3)*3 are cubefree.
a(3) = 4373 because 4373 is prime and none of 4373 + 1 = 4374 = (3*3*3)*162, 4373 + 2 = 4375 = (5*5*5)*35, 4373 + 3 = 4376 = (2*2*2)*547 are cubefree.
a(4) = 885623 because 885623 is prime and none of 885623 + 1 = 885624 = (2*2*2)*110703, 885623 + 2 = 885625 = (5*5*5)*7085, 885623 + 3 = 885626 = (7*7*7)*2582, 885623 + 4 = 885627 = (3*3*3)*32801 are cubefree.
MATHEMATICA
Table[SelectFirst[Prime@ Range[10^5], Function[p, AllTrue[p + Range@ n, AnyTrue[Last /@ FactorInteger@ #, # > 2 &] &]]], {n, 4}] (* Michael De Vlieger, Apr 07 2016, Version 10 *)
PROG
(PARI) isokp(p, n)=for (k=1, n, if (vecmax(factor(p+k)[, 2]) < 3, return (0)); ); 1;
a(n) = forprime(p=7, , if (isokp(p, n), return(p))) \\ Michel Marcus, Apr 07 2016
Search completed in 0.052 seconds
|