[go: up one dir, main page]

login
Search: a046099 -id:a046099
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{d|n} phi(d) * mu(d) * mu(n/d).
+10
2
1, -2, -3, 1, -5, 6, -7, 0, 2, 10, -11, -3, -13, 14, 15, 0, -17, -4, -19, -5, 21, 22, -23, 0, 4, 26, 0, -7, -29, -30, -31, 0, 33, 34, 35, 2, -37, 38, 39, 0, -41, -42, -43, -11, -10, 46, -47, 0, 6, -8, 51, -13, -53, 0, 55, 0, 57, 58, -59, 15, -61, 62, -14, 0, 65
OFFSET
1,2
COMMENTS
Dirichlet inverse of A003967.
Moebius transform of A097945.
From Vaclav Kotesovec, Feb 19 2021: (Start)
Abs(a(n)) <= n.
a(n) = n iff n is in A030229. (End)
LINKS
FORMULA
a(n) = Sum_{k=1..n} mu(gcd(n,k)) * mu(n/gcd(n,k)).
a(1) = 1; a(n) = -Sum_{d|n, d < n} A003967(n/d) * a(d).
a(n) = Sum_{d|n} mu(n/d) * A097945(d).
Multiplicative with a(p^e) = -p if e=1, p-1 if e=2, and 0 otherwise. - Amiram Eldar, Feb 19 2021
MATHEMATICA
Table[Sum[EulerPhi[d] MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 65}]
Table[Sum[MoebiusMu[GCD[n, k]] MoebiusMu[n/GCD[n, k]], {k, n}], {n, 65}]
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d)*moebius(d)*moebius(n/d)); \\ Michel Marcus, Feb 17 2021
CROSSREFS
Cf. A000010, A003967, A007427, A007431, A008683, A030229 (fixed points), A046099 (positions of 0's), A068341, A097945, A276833.
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Feb 16 2021
STATUS
approved
a(n) = Sum_{d|n} mu(d)*mu(n/d)*d^n.
+10
2
1, -5, -28, 16, -3126, 47450, -823544, 0, 19683, 10009766650, -285311670612, -2176786432, -302875106592254, 11112685048647250, 437893920912786408, 0, -827240261886336764178, -101560344088905, -1978419655660313589123980, -100000000000001048576
OFFSET
1,2
LINKS
FORMULA
If p is prime, a(p) = -1 - p^p.
MATHEMATICA
a[n_] := DivisorSum[n, MoebiusMu[#] * MoebiusMu[n/#] * #^n &]; Array[a, 20] (* Amiram Eldar, Aug 24 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(d)*moebius(n/d)*d^n);
CROSSREFS
Diagonal of A347227.
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 24 2021
STATUS
approved
Gaps between cubefree numbers: a(n) = A004709(n+1) - A004709(n).
+10
2
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,7
COMMENTS
This sequence is unbounded since by the Chinese Remainder Theorem there are arbitrarily long runs of consecutive numbers that are not cubefree.
The first occurrence of a(n) = 1, 2, ... is at n = 1, 7, 68, 1145, 18825, 15003967, ...
The asymptotic density of the occurrences of 1 in this sequence is density(A340152)/density(A004709) = A340153/A088453 = 0.8136635872...
LINKS
Michael J. Mossinghoff, Tomás Oliveira e Silva, and Tim Trudgian, The distribution of k-free numbers, Mathematics of Computation, Vol. 90, No. 328 (2021), pp. 907-929; arXiv preprint, arXiv:1912.04972 [math.NT], 2019-2020.
FORMULA
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = zeta(3) (A002117).
EXAMPLE
a(1) = A004709(2) - A004709(1) = 2 - 1 = 1.
a(7) = A004709(8) - A004709(7) = 9 - 7 = 2.
MATHEMATICA
cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Differences @ Select[Range[100], cubeFreeQ]
PROG
(PARI)
A003557(n) = (n/factorback(factorint(n)[, 1]));
isA004709(n) = issquarefree(A003557(n));
A349236list(first_n) = { my(v=vector(first_n), k=0, e=1); for(n=2, oo, if(isA004709(n), k++; v[k] = n-e; e = n); if(#v==k, return(v))); }; \\ Antti Karttunen, Nov 11 2021
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 11 2021
STATUS
approved
Heinz numbers of integer partitions with at least one part divisible by 3.
+10
2
5, 10, 13, 15, 20, 23, 25, 26, 30, 35, 37, 39, 40, 45, 46, 47, 50, 52, 55, 60, 61, 65, 69, 70, 73, 74, 75, 78, 80, 85, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 110, 111, 113, 115, 117, 120, 122, 125, 130, 135, 137, 138, 140, 141, 143, 145, 146, 148, 150
OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms together with their prime indices begin:
5: {3}
10: {1,3}
13: {6}
15: {2,3}
20: {1,1,3}
23: {9}
25: {3,3}
26: {1,6}
30: {1,2,3}
35: {3,4}
37: {12}
39: {2,6}
40: {1,1,1,3}
45: {2,2,3}
46: {1,9}
47: {15}
50: {1,3,3}
52: {1,1,6}
55: {3,5}
60: {1,1,2,3}
MATHEMATICA
Select[Range[100], MemberQ[PrimePi/@First/@If[#==1, {}, FactorInteger[#]]/3, _?IntegerQ]&]
CROSSREFS
For 4 instead of 3 we have A046101, counted by A295342.
This sequence ranks the partitions counted by A295341, compositions A335464.
For 2 instead of 3 we have A324929 (and A013929), counted by A047967.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A004709 lists numbers divisible by no cube, counted by A000726.
A036966 lists 3-full numbers, counted by A100405.
A046099 lists non-cubefree numbers.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A354234 counts partitions of n with at least one part divisible by k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 23 2022
STATUS
approved
Numbers whose prime factorization has exactly one exponent that is larger than 2.
+10
2
8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 343, 344
OFFSET
1,1
COMMENTS
Subsequence of A046099 and first differs from it at n = 35: A046099(35) = 216 = 2^3 * 3^3 is not a term of this sequence.
Numbers k such that the powerful part of k, A057521(k), is a prime power whose exponent is larger than 2 (A246549).
The asymptotic density of this sequence is (1/zeta(3)) * Sum_{p prime} 1/(p^3-1) = A286229 / A002117 = 0.16148833663564192901... .
EXAMPLE
8 = 2^3 is a term since its prime factorization has exactly one exponent, 3, that is larger than 2.
MATHEMATICA
q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 2 &)] == 1; Select[Range[350], q]
PROG
(PARI) is(k) = #select(x -> x > 2, factor(k)[, 2]) == 1;
CROSSREFS
Subsequence of A046099.
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 01 2024
STATUS
approved
Non-cubefree noncubes.
+10
1
16, 24, 32, 40, 48, 54, 56, 72, 80, 81, 88, 96, 104, 108, 112, 120, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336, 344, 351, 352, 360
OFFSET
1,1
LINKS
FORMULA
For n > 35, a(n) < 7n. Asymptotically, a(n) ~ kn with k = zeta(3)/(zeta(3)-1) = 5.949... . - Charles R Greathouse IV, Oct 16 2015 [Corrected by Amiram Eldar, Aug 31 2024]
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(3*s) - zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Aug 31 2024
MATHEMATICA
With[{m = 10}, Select[Complement[Range[m^3], Range[m]^3], AnyTrue[FactorInteger[#][[;; , 2]], #1 > 2 &] &]] (* Amiram Eldar, Aug 31 2024 *)
PROG
(PARI) is(n)=my(f=factor(n)[, 2]); f%3 && vecmax(f)>2 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Intersection of A046099 and A007412.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 25 2002
STATUS
approved
Sum of the cubes of the first n noncubefree numbers.
+10
1
0, 512, 4608, 18432, 38115, 70883, 134883, 245475, 402939, 578555, 840699, 1213947, 1725947, 2257388, 2938860, 3823596, 4948460, 6208172, 7613100, 9341100, 11294225, 13391377, 15851752, 18367208, 21353192, 24865000, 28961000
OFFSET
0,2
FORMULA
a(n) = Sum_{k=1..n} A046099(k)^3.
a(n) ~ c * n^4, where c = (zeta(3)/(zeta(3)-1))^3/4 = 52.6373493984... . - Amiram Eldar, Feb 20 2024
EXAMPLE
a(10) = 8^3 + 16^3 + 24^3 + 27^3 + 32^3 + 40^3 + 48^3 + 54^3 + 56^3 + 64^3 = 840699.
MATHEMATICA
noncubeFreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] > 2; Join[{0}, Accumulate[Select[Range[200], noncubeFreeQ]^3]] (* Amiram Eldar, Feb 20 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 20 2005
STATUS
approved
Indices of Fibonacci numbers that are not cubefree.
+10
1
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 125, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 250, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324
OFFSET
1,1
COMMENTS
Supersequence of A037917.
Conjecture: all terms are multiples of 6 or 125. - Harvey P. Dale, Apr 28 2020
The conjecture is false. The counterexamples are 392, 784, 1183, 1210, .... . - Amiram Eldar, Oct 16 2023
LINKS
FORMULA
A000045 INTERSECT A046099.
A010056(a(n)) * (1 - A212793(a(n))) = 1. - Reinhard Zumkeller, May 27 2012
EXAMPLE
Fibonacci(125) = 5^3 * 3001 * 158414167964045700001 = A000045(125) is not cubefree, which adds 125 to the sequence.
MATHEMATICA
Select[Range[350], Max[FactorInteger[Fibonacci[#]][[All, 2]]]>2&] (* Harvey P. Dale, Apr 28 2020 *)
PROG
(Haskell)
import Data.List (findIndices)
a175130 n = a175130_list !! (n-1)
a175130_list = map (+ 1) $ findIndices ((== 0) . a212793) $ tail a000045_list
-- Reinhard Zumkeller, May 27 2012
(PARI) is(n)=n>5 && vecmax(factor(fibonacci(n))[, 2])>2 \\ Charles R Greathouse IV, Nov 07 2014
KEYWORD
nonn
AUTHOR
R. J. Mathar, Feb 16 2010
STATUS
approved
Dirichlet inverse of Ramanujan's L-series (A000594).
+10
1
1, 24, -252, 2048, -4830, -6048, 16744, 0, 177147, -115920, -534612, -516096, 577738, 401856, 1217160, 0, 6905934, 4251528, -10661420, -9891840, -4219488, -12830688, -18643272, 0, 48828125, 13865712, 0, 34291712, -128406630, 29211840
OFFSET
1,2
COMMENTS
Although it is conjectured that A000594(n) is never 0 here a(n)=0 for infinitely many n. Namely a(n)=0 iff n is not cubefree (n is in A046099).
Multiplicative because A000594 is. - Andrew Howroyd, Aug 05 2018
REFERENCES
B. Cloitre, On the order of absolute convergence of Dirichlet series and the Grand Riemann hypothesis, in preparation 2010-2011 (unpublished as of August 2018).
LINKS
FORMULA
For Re(s)>13/2 we have sum_{n>0}a(n)/n^s*sum_{n>0}A000594(n)/n^s=1. If n is squarefree then a(n)=(-1)^omega(n)*A000594(n).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = -Sum[a[d]*RamanujanTau[n/d], {d, Most[Divisors[n]]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 18 2013 *)
PROG
(PARI) a(n)=if(n<2, 1/A000594(1), -1/A000594(1)*sumdiv(n, d, if(n-d, a(d)*A000594(n/d), 0)))
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, ramanujantau(n)))} \\ Andrew Howroyd, Aug 05 2018
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Benoit Cloitre, Oct 03 2010
STATUS
approved
a(n) is the smallest prime p such that none of p + 1, p + 2,... p + n are cubefree.
+10
1
7, 79, 4373, 885623, 146447621, 309763486247, 151536553447871
OFFSET
1,1
EXAMPLE
a(1) = 7 because 7 is prime and none of 7 + 1 = 8 = (2*2*2) is cubefree.
a(2) = 79 because 79 is prime and none of 79 + 1 = 80 = (2*2*2)*10, 79 + 2 = 81 = (3*3*3)*3 are cubefree.
a(3) = 4373 because 4373 is prime and none of 4373 + 1 = 4374 = (3*3*3)*162, 4373 + 2 = 4375 = (5*5*5)*35, 4373 + 3 = 4376 = (2*2*2)*547 are cubefree.
a(4) = 885623 because 885623 is prime and none of 885623 + 1 = 885624 = (2*2*2)*110703, 885623 + 2 = 885625 = (5*5*5)*7085, 885623 + 3 = 885626 = (7*7*7)*2582, 885623 + 4 = 885627 = (3*3*3)*32801 are cubefree.
MATHEMATICA
Table[SelectFirst[Prime@ Range[10^5], Function[p, AllTrue[p + Range@ n, AnyTrue[Last /@ FactorInteger@ #, # > 2 &] &]]], {n, 4}] (* Michael De Vlieger, Apr 07 2016, Version 10 *)
PROG
(PARI) isokp(p, n)=for (k=1, n, if (vecmax(factor(p+k)[, 2]) < 3, return (0)); ); 1;
a(n) = forprime(p=7, , if (isokp(p, n), return(p))) \\ Michel Marcus, Apr 07 2016
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(5) from Michel Marcus, Apr 07 2016
a(6)-a(7) from Giovanni Resta, Apr 12 2016
STATUS
approved

Search completed in 0.052 seconds