[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a045779 -id:a045779
     Sort: relevance | references | number | modified | created      Format: long | short | data
Least value with A045779(n) factorizations into distinct factors.
+20
16
1, 6, 12, 64, 24, 256, 48, 512, 60, 96, 2048, 144, 210, 120, 216, 180, 384, 288, 16384, 240, 432, 420, 65536, 1536, 360, 480, 900, 864, 3072, 1152, 1296, 2310, 524288, 6144, 960, 720, 840, 2304, 1728, 1080, 1260, 2592, 2097152, 1800, 4608, 24576, 4194304, 1440, 3456
OFFSET
1,2
LINKS
EXAMPLE
From Gus Wiseman, Jan 11 2020: (Start)
The strict factorizations of a(n) for n = 1..9:
() (6) (12) (64) (24) (256) (48) (512) (60)
(2*3) (2*6) (2*32) (3*8) (4*64) (6*8) (8*64) (2*30)
(3*4) (4*16) (4*6) (8*32) (2*24) (16*32) (3*20)
(2*4*8) (2*12) (2*128) (3*16) (2*256) (4*15)
(2*3*4) (2*4*32) (4*12) (4*128) (5*12)
(2*8*16) (2*3*8) (2*4*64) (6*10)
(2*4*6) (2*8*32) (2*5*6)
(4*8*16) (3*4*5)
(2*3*10)
(End)
30 is not in the sequence even though A045779(30) = 5. As 24 is the smallest k such that A045779(k) = 5 we have a(m) = 24 where m is such that A045779(m) = 5 which turns out to be m = 5 (not every positive integer is in A045779). So a(5) = 24. - David A. Corneth, Oct 24 2024
CROSSREFS
All terms belong to A025487.
The non-strict version is A045783.
The sorted version is A330997.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly n strict factorizations is A330974(n).
KEYWORD
nonn
EXTENSIONS
More terms from David A. Corneth, Oct 24 2024
STATUS
approved
Number of factorizations of n into distinct factors greater than 1.
+10
278
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5
OFFSET
1,6
COMMENTS
This sequence depends only on the prime signature of n and not on the actual value of n.
Also the number of strict multiset partitions (sets of multisets) of the prime factors of n. - Gus Wiseman, Dec 03 2016
Number of sets of integers greater than 1 whose product is n. - Antti Karttunen, Feb 20 2024
LINKS
Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, Preprint, 2012.
P. A. J. G. Chevalier, A "table of Mendeleev" for physical quantities?, Slides from a talk, May 14 2014, Leuven, Belgium.
A. Knopfmacher, M. Mays, Ordered and Unordered Factorizations of Integers: Unordered Factorizations with Distinct Parts, The Mathematica Journal 10(1), 2006.
Eric Weisstein's World of Mathematics, Unordered Factorization
FORMULA
Dirichlet g.f.: Product_{n>=2}(1 + 1/n^s).
Let p and q be two distinct prime numbers and k a natural number. Then a(p^k) = A000009(k) and a(p^k*q) = A036469(k). - Alexander Adam, Dec 28 2012
Let p_i with 1<=i<=k k distinct prime numbers. Then a(Product_{i=1..k} p_i) = A000110(k). - Alexander Adam, Dec 28 2012
EXAMPLE
24 can be factored as 24, 2*12, 3*8, 4*6, or 2*3*4, so a(24) = 5. The factorization 2*2*6 is not permitted because the factor 2 is present twice. a(1) = 1 represents the empty factorization.
MAPLE
with(numtheory):
b:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
end:
a:= n-> b(n$2):
seq(a(n), n=1..120); # Alois P. Heinz, May 26 2013
MATHEMATICA
gd[m_, 1] := 1; gd[1, n_] := 0; gd[1, 1] := 1; gd[0, n_] := 0; gd[m_, n_] := gd[m, n] = Total[gd[# - 1, n/#] & /@ Select[Divisors[n], # <= m &]]; Array[ gd[#, #] &, 100] (* Alexander Adam, Dec 28 2012 *)
PROG
(PARI) v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, k==n)) ); v /* Max Alekseyev, Jul 16 2014 */
(PARI) A045778(n, k=n) = ((n<=k) + sumdiv(n, d, if(d > 1 && d <= k && d < n, A045778(n/d, d-1)))); \\ After Alois P. Heinz's Maple-code by Antti Karttunen, Jul 23 2017, edited Feb 20 2024
(PARI) A045778(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A045778(n/d, d-1)))); \\ Antti Karttunen, Feb 20 2024
(PARI)
(Python)
from sympy.core.cache import cacheit
from sympy import divisors, isprime
@cacheit
def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else b(n//d, d - 1) for d in divisors(n)[1:-1]))
def a(n): return b(n, n)
print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Aug 19 2017, after Maple code
(APL, Dyalog dialect)
divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
A045778 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{×/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (simple, but a memory hog)
A045778 ← { ⍺←⌽divisors(⍵) ⋄ 1=⍵:1 ⋄ 0=≢⍺:0 ⋄ R←⍺↓⍨⍺⍳⍵∘÷ ⋄ Ð←{⍺/⍨0=⍺|⍵} ⋄ +/(((R)Ð⊢)∇⊢)¨(⍵∘÷)¨⍺ } ⍝ (more efficient) - Antti Karttunen, Feb 20 2024
CROSSREFS
Cf. A036469, A114591, A114592, A316441 (Dirichlet inverse).
Cf. A156648 (2*Dgf at s=2), A073017 (2*Dgf at s=3), A258870 (2*Dgf at s=4).
Cf. also A069626 (Number of sets of integers > 1 whose least common multiple is n).
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by Franklin T. Adams-Watters, Jun 04 2009
STATUS
approved
Number of factorizations of n for some n (image of A001055).
+10
33
1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 19, 21, 22, 26, 29, 30, 31, 36, 38, 42, 45, 47, 52, 56, 57, 64, 66, 67, 74, 77, 92, 97, 98, 101, 105, 109, 118, 135, 137, 139, 141, 162, 165, 171, 176, 181, 189, 195, 198, 203, 212, 231, 249, 250, 254, 257, 267, 269, 272, 289
OFFSET
1,2
COMMENTS
Also the image of A318284. - Gus Wiseman, Jan 11 2020
LINKS
Florian Luca, Anirban Mukhopadhyay and Kotyada Srinivas, On the Oppenheim's "factorisatio numerorum" function, arXiv:0807.0986 [math.NT], 2008.
FORMULA
The Luca et al. paper shows that the number of terms with a(n) <= x is x^{ O( log log log x / log log x )}. - N. J. A. Sloane, Jun 12 2009
MATHEMATICA
terms = 61; m0 = 10^5; dm = 10^4;
f[1, _] = 1; f[n_, k_] := f[n, k] = Sum[f[n/d, d], {d, Select[Divisors[n], 1 < # <= k &]}];
Clear[seq]; seq[m_] := seq[m] = Sort[Tally[Table[f[n, n], {n, 1, m}]][[All, 1]]][[1 ;; terms]]; seq[m = m0]; seq[m += dm]; While[Print[m]; seq[m] != seq[m - dm], m += dm];
seq[m] (* Jean-François Alcover, Oct 04 2018 *)
CROSSREFS
Factorizations are A001055 with image this sequence and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with exactly a(n) factorizations is A045783(n).
The least number with exactly n factorizations is A330973(n).
KEYWORD
nonn
EXTENSIONS
Name edited by Gus Wiseman, Jan 11 2020
STATUS
approved
Least value with A045782(n) factorizations.
+10
28
1, 4, 8, 12, 16, 24, 36, 60, 48, 128, 72, 96, 120, 256, 180, 144, 192, 216, 420, 240, 1024, 384, 288, 360, 2048, 432, 480, 900, 768, 840, 576, 1260, 864, 720, 8192, 960, 1080, 1152, 4620, 1800, 3072, 1680, 1728, 1920, 1440, 32768, 2304, 2592, 6144
OFFSET
1,2
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
EXAMPLE
From Gus Wiseman, Jan 11 2020: (Start)
Factorizations of n = 1, 4, 8, 12, 16, 24, 36, 60, 48:
{} 4 8 12 16 24 36 60 48
2*2 2*4 2*6 2*8 3*8 4*9 2*30 6*8
2*2*2 3*4 4*4 4*6 6*6 3*20 2*24
2*2*3 2*2*4 2*12 2*18 4*15 3*16
2*2*2*2 2*2*6 3*12 5*12 4*12
2*3*4 2*2*9 6*10 2*3*8
2*2*2*3 2*3*6 2*5*6 2*4*6
3*3*4 3*4*5 3*4*4
2*2*3*3 2*2*15 2*2*12
2*3*10 2*2*2*6
2*2*3*5 2*2*3*4
2*2*2*2*3
(End)
CROSSREFS
All terms belong to A025487.
The strict version is A045780.
The sorted version is A330972.
Includes all highly factorable numbers A033833.
The least number with exactly n factorizations is A330973(n).
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
KEYWORD
nonn
STATUS
approved
Least positive integer with exactly n factorizations into factors > 1, and 0 if no such number exists.
+10
26
1, 4, 8, 12, 16, 0, 24, 0, 36, 0, 60, 48, 0, 0, 128, 72, 0, 0, 96, 0, 120, 256, 0, 0, 0, 180, 0, 0, 144, 192, 216, 0, 0, 0, 0, 420, 0, 240, 0, 0, 0, 1024, 0, 0, 384, 0, 288, 0, 0, 0, 0, 360, 0, 0, 0, 2048, 432, 0, 0, 0, 0, 0, 0, 480, 0, 900, 768, 0, 0, 0, 0, 0
OFFSET
1,2
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
MATHEMATICA
nn=10;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[fam[#]&, 2^nn];
Table[If[#=={}, 0, #[[1, 1]]]&[Position[nds, i]], {i, nn}]
CROSSREFS
All nonzero terms belong to A025487.
Includes all highly factorable numbers A033833.
Factorizations are A001055, with image A045782.
The version without zeros is A045783.
The sorted version is A330972.
The strict version is A330974.
Positions of zeros are A330976.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 06 2020
EXTENSIONS
More terms from Jinyuan Wang, Jul 07 2021
STATUS
approved
Numbers that are not the number of factorizations into factors > 1 of any positive integer.
+10
23
6, 8, 10, 13, 14, 17, 18, 20, 23, 24, 25, 27, 28, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 58, 59, 60, 61, 62, 63, 65, 68, 69, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 99
OFFSET
1,1
COMMENTS
Warning: I have only confirmed the first eight terms. The rest are derived from A045782. - Gus Wiseman, Jan 07 2020
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
MATHEMATICA
nn=15;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[fam[#]&, 2^nn];
Complement[Range[nn], nds]
CROSSREFS
Complement of A045782.
The strict version is A330975.
Factorizations are A001055, with image A045782.
Strict factorizations are A045778, with image A045779.
The least number with n factorizations is A330973(n).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 07 2020
STATUS
approved
Least positive integer with n factorizations into distinct factors > 1, and 0 if no such number exists.
+10
14
1, 6, 12, 64, 24, 256, 48, 512, 60, 96, 0, 2048, 0, 144, 210, 120, 216, 180, 384, 0, 288, 16384, 0, 0, 240, 0, 432, 0, 0, 0, 420, 65536, 1536, 360, 0, 0, 0, 480, 0, 900, 0, 864, 3072, 1152, 0, 1296, 0, 0, 0, 0, 0, 2310, 0, 524288, 6144, 960, 720, 0, 840, 0, 2304
OFFSET
1,2
MATHEMATICA
nn=10;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[Select[fam[#], UnsameQ@@#&]&, 2^nn];
Table[If[#=={}, 0, #[[1, 1]]]&[Position[nds, i]], {i, nn}]
CROSSREFS
All nonzero terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The version with zeros removed is A045780.
The non-strict version is A330973.
Positions of zeros are A330975.
The sorted version is A330997.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 06 2020
EXTENSIONS
More terms from Jinyuan Wang, Jul 07 2021
STATUS
approved
Sorted list containing the least number with each possible nonzero number of factorizations into distinct factors > 1.
+10
13
1, 6, 12, 24, 48, 60, 64, 96, 120, 144, 180, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 720, 840, 864, 900, 960, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 2048, 2160, 2304, 2310, 2520, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4320
OFFSET
1,2
EXAMPLE
The strict factorizations of a(n) for n = 1..9.
{} 6 12 24 48 60 64 96 120
2*3 2*6 3*8 6*8 2*30 2*32 2*48 2*60
3*4 4*6 2*24 3*20 4*16 3*32 3*40
2*12 3*16 4*15 2*4*8 4*24 4*30
2*3*4 4*12 5*12 6*16 5*24
2*3*8 6*10 8*12 6*20
2*4*6 2*5*6 2*6*8 8*15
3*4*5 3*4*8 10*12
2*3*10 2*3*16 3*5*8
2*4*12 4*5*6
2*3*20
2*4*15
2*5*12
2*6*10
3*4*10
2*3*4*5
MATHEMATICA
nn=1000;
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strfacs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[strfacs, nn];
Table[Position[nds, i][[1, 1]], {i, First/@Gather[nds]}]
CROSSREFS
All terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The unsorted version is A045780.
The non-strict version is A330972.
The least number with n strict factorizations is A330974.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 06 2020
STATUS
approved
Numbers that are not the number of factorizations of n into distinct factors > 1 for any n.
+10
12
11, 13, 20, 23, 24, 26, 28, 29, 30, 35, 36, 37, 39, 41, 45, 47, 48, 49, 50, 51, 53, 58, 60, 62, 63, 65, 66, 68, 69, 71, 72, 73, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108, 109, 113, 114, 115, 118
OFFSET
1,1
COMMENTS
Warning: I have only confirmed the first three terms. The rest are derived from A045779. - Gus Wiseman, Jan 07 2020
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
MATHEMATICA
nn=20;
fam[n_]:=fam[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[fam[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nds=Length/@Array[Select[fam[#], UnsameQ@@#&]&, 2^nn];
Complement[Range[nn], nds]
CROSSREFS
Complement of A045779.
The non-strict version is A330976.
Factorizations are A001055, with image A045782, with complement A330976.
Strict factorizations are A045778, with image A045779.
The least positive integer with n strict factorizations is A330974(n).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 07 2020
STATUS
approved
Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n).
+10
9
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 11, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 11, 1, 1, 1, 7, 1, 11, 1, 4, 1, 1, 1, 19, 1, 4, 4, 9, 1, 1, 1, 7, 1
OFFSET
1,4
COMMENTS
A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.
FORMULA
a(2^n) = A330994(n).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[facs[n]]/Length[Select[facs[n], UnsameQ@@#&]], {n, 100}]//Numerator
PROG
(PARI)
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A045778(n/d, d-1))));
A331023(n) = numerator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021
CROSSREFS
Positions of 1's are A005117.
Positions of 2's appear to be A001248.
The denominators are A331024.
The rounded quotients are A331048.
The same for integer partitions is A330994.
KEYWORD
nonn,frac
AUTHOR
Gus Wiseman, Jan 08 2020
EXTENSIONS
More terms from Antti Karttunen, May 27 2021
STATUS
approved

Search completed in 0.012 seconds