[go: up one dir, main page]

login
Search: a039596 -id:a039596
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square triangular numbers: numbers that are both triangular and square.
(Formerly M5259 N2291)
+10
83
0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, 113422539294030403250144100
OFFSET
0,3
COMMENTS
Satisfies a recurrence of S_r type for r=36: 0, 1, 36 and a(n-1)*a(n+1)=(a(n)-1)^2. First observed by Colin Dickson in alt.math.recreational, Mar 07 2004. - Rainer Rosenthal, Mar 14 2004
For every n, a(n) is the first of three triangular numbers in geometric progression. The third number in the progression is a(n+1). The middle triangular number is sqrt(a(n)*a(n+1)). Chen and Fang prove that four distinct triangular numbers are never in geometric progression. - T. D. Noe, Apr 30 2007
The sum of any two terms is never equal to a Fermat number. - Arkadiusz Wesolowski, Feb 14 2012
Conjecture: No a(2^k), where k is a nonnegative integer, can be expressed as a sum of a positive square number and a positive triangular number. - Ivan N. Ianakiev, Sep 19 2012
For n=2k+1, A010888(a(n))=1 and for n=2k, k > 0, A010888(a(n))=9. - Ivan N. Ianakiev, Oct 12 2013
For n > 0, these are the triangular numbers which are the sum of two consecutive triangular numbers, for instance 36 = 15 + 21 and 1225 = 595 + 630. - Michel Marcus, Feb 18 2014
The sequence is the case P1 = 36, P2 = 68, Q = 1 of the 3-parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
For n=2k, k > 0, a(n) is divisible by 12 and is therefore abundant. I conjecture that for n=2k+1 a(n) is deficient [true for k up to 43 incl.]. - Ivan N. Ianakiev, Sep 30 2014
The conjecture is true for all k > 0 because: For n=2k+1, k > 0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. - Muniru A Asiru, Apr 13 2016
Numbers k for which A139275(k) is a perfect square. - Bruno Berselli, Jan 16 2018
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923; see Vol. 2, p. 10.
Martin Gardner, Time Travel and other Mathematical Bewilderments, Freeman & Co., 1988, pp. 16-17.
Miodrag S. Petković, Famous Puzzles of Great Mathematicians, Amer. Math. Soc. (AMS), 2009, p. 64.
J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 2001, p. 196.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 93.
LINKS
Kade Robertson, Table of n, a(n) for n = 0..600 [This replaces an earlier b-file computed by T. D. Noe]
Nikola Adžaga, Andrej Dujella, Dijana Kreso, and Petra Tadić, On Diophantine m-tuples and D(n)-sets, 2018.
Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7.
Tom Beldon and Tony Gardiner, Triangular numbers and perfect squares, The Mathematical Gazette, 2002, pp. 423-431, esp pp. 424-426.
P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24.
Kwang-Wu Chen and Yu-Ren Pan, Greatest Common Divisors of Shifted Horadam Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.5.8.
Yong-Gao Chen and Jin-Hui Fang, Triangular numbers in geometric progression, INTEGERS 7 (2007), #A19.
F. Javier de Vega, On the parabolic partitions of a number, J. Alg., Num. Theor., and Appl. (2023) Vol. 61, No. 2, 135-169.
Colin Dickson et al., ratio of integers = sqrt(2), thread in newsgroup alt.math.recreational, March 7, 2004.
H. G. Forder, A Simple Proof of a Result on Diophantine Approximation, Math. Gaz., 47 (1963), 237-238.
Bill Gosper, The Triangular Squares, 2014.
Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020. Mentions this sequence.
Gillian Hatch, Pythagorean Triples and Triangular Square Numbers, Mathematical Gazette 79 (1995), 51-55.
P. Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
A. Nowicki, The numbers a^2+b^2-dc^2, J. Int. Seq. 18 (2015) # 15.2.3.
J. L. Pietenpol, A. V. Sylwester, E. Just, and R. M. Warten, Problem E 1473, Amer. Math. Monthly, Vol. 69, No. 2 (Feb. 1962), pp. 168-169. (From the editorial note on p. 169 of this source, we learn that the question about the existence of perfect squares in the sequence of triangular numbers cropped up in the Euler-Goldbach Briefwechsel of 1730; the translation into English of the relevant letters can be found at Correspondence of Leonhard Euler with Christian Goldbach (part II), pp. 614-615.) - José Hernández, May 24 2022
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2020.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
D. A. Q., Triangular square numbers - a postscript, Math. Gaz., 56 (1972), 311-314.
K. Ramsey, Generalized Proof re Square Triangular Numbers, digest of 2 messages in Triangular_and_Fibonacci_Numbers Yahoo group, May 27, 2005 - Oct 10, 2011.
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
UWC, Problem A, Nieuw Archief voor Wiskunde, Dec 2004; Jaap Spies, Solution.
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Square Triangular Number.
Eric Weisstein's World of Mathematics, Triangular Number.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). - Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) = A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = A001109(n)^2 = A001108(n)*(A001108(n)+1)/2 = (A000129(n)*A001333(n))^2 = (A000129(n)*(A000129(n) + A000129(n-1)))^2. - Henry Bottomley, Apr 19 2000
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. - Jaap Spies, Dec 12 2004
From Antonio Alberto Olivares, Nov 07 2003: (Start)
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
a(n+1) = (17*A029547(n) - A091761(n) - 1)/16. - R. J. Mathar, Nov 16 2007
a(n) = A001333^2 * A000129^2 = A000129(2*n)^2/4 = binomial(A001108,2). - Bill Gosper, Jul 28 2008
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. - Bill Gosper, Jul 25 2008
a(n) = (1/8)*(sinh(2*n*arcsinh(1)))^2. - Artur Jasinski, Feb 10 2010
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). - Manuel Valdivia, Aug 15 2011
a(n) = (A011900(n) + A001652(n))^2; see the link about the generalized proof of square triangular numbers. - Kenneth J Ramsey, Oct 10 2011
a(2*n+1) = A002315(n)^2*(A002315(n)^2 + 1)/2. - Ivan N. Ianakiev, Oct 10 2012
a(2*n+1) = ((sqrt(t^2 + (t+1)^2))*(2*t+1))^2, where t = (A002315(n) - 1)/2. - Ivan N. Ianakiev, Nov 01 2012
a(2*n) = A001333(2*n)^2 * (A001333(2*n)^2 - 1)/2, and a(2*n+1) = A001333(2*n+1)^2 * (A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using A002315, which is a bisection of A001333. Using A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". - Richard R. Forberg, Aug 30 2013
a(n) = (A001542(n)/2)^2.
From Peter Bala, Apr 03 2014: (Start)
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = A096979(2*n-1) for n > 0. - Ivan N. Ianakiev, Jun 21 2014
a(n) = (6*sqrt(a(n-1)) - sqrt(a(n-2)))^2. - Arkadiusz Wesolowski, Apr 06 2015
From Daniel Poveda Parrilla, Jul 16 2016 and Sep 21 2016: (Start)
a(n) = A000290(A002965(2*n)*A002965(2*n + 1)) (after Hugh Darwen).
a(n) = A000217(2*(A000129(n))^2 - (A000129(n) mod 2)).
a(n) = A000129(n)^4 + Sum_{k=0..(A000129(n)^2 - (A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) = A002965(2*n)^4 + Sum_{k=A002965(2*n)^2..A002965(2*n)*A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. - Ilya Gutkovskiy, Jul 16 2016
EXAMPLE
a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
MAPLE
a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004
A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]], AppendTo[lst, f[n]]], {n, 0, 10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Transpose[NestList[Flatten[{Rest[#], 34Last[#]-First[#]+2}]&, {0, 1}, 20]][[1]] (* Harvey P. Dale, Mar 25 2011 *)
LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *)
LinearRecurrence[{6, -1}, {0, 1}, 20]^2 (* Harvey P. Dale, Oct 22 2012 *)
(* Square = Triangular = Triangular = A001110 *)
ChebyshevU[#-1, 3]^2==Binomial[ChebyshevT[#/2, 3]^2, 2]==Binomial[(1+ChebyshevT[#, 3])/2, 2]=={1, 36, 1225, 41616, 1413721}[[#]]&@Range[5]
True (* Bill Gosper, Jul 20 2015 *)
L=0; r={}; Do[AppendTo[r, L]; L=1+17*L+6*Sqrt[L+8*L^2], {i, 1, 19}]; r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
PROG
(PARI) a=vector(100); a[1]=1; a[2]=36; for(n=3, #a, a[n]=34*a[n-1]-a[n-2]+2); a \\ Charles R Greathouse IV, Jul 25 2011
(Haskell)
a001110 n = a001110_list !! n
a001110_list = 0 : 1 : (map (+ 2) $
zipWith (-) (map (* 34) (tail a001110_list)) a001110_list)
-- Reinhard Zumkeller, Oct 12 2011
(MIT/GNU Scheme, with memoizing definec-macro from Antti Karttunen's IntSeq-library)
(definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2))))))
;; The following two are for testing whether n is in this sequence:
(define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n)))))
(define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n))))))
;; Antti Karttunen, Dec 06 2013
(Magma) [n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
CROSSREFS
Other S_r type sequences are S_4=A000290, S_5=A004146, S_7=A054493, S_8=A001108, S_9=A049684, S_20=A049683, S_36=this sequence, S_49=A049682, S_144=A004191^2.
Cf. A001014; intersection of A000217 and A000290; A010052(a(n))*A010054(a(n)) = 1.
Cf. A005214, A054686, A232847 and also A233267 (reveals an interesting divisibility pattern for this sequence).
Cf. A240129 (triangular numbers that are squares of triangular numbers), A100047.
See A229131, A182334, A299921 for near-misses.
KEYWORD
nonn,easy,nice
STATUS
approved
Numbers that are both triangular and tetrahedral.
+10
18
0, 1, 10, 120, 1540, 7140
OFFSET
1,3
COMMENTS
From Anthony C Robin, Oct 27 2022: (Start)
For numbers to be triangular and tetrahedral, we look for solutions r*(r+1)*(r+2)/6 = t*(t+1)/2 = a(n). The corresponding r and t are r = A224421(n-1) and t = A102349(n).
Writing m=r+1 and s=2t+1, this problem is equivalent to solving the Diophantine equation 3 + 4*(m^3 - m) = 3*s^2. The integer solutions for this equation are m = 0, 1, 2, 4, 9, 21, 35 and the corresponding values of s are 1, 1, 3, 9, 31, 111, 239. (End)
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Ellipses (Paris), 2008 (entry 10, page 3; entry 120, page 41).
L. J. Mordell, Diophantine Equations, Ac. Press, page 258.
P. Odifreddi, Il museo dei numeri, Rizzoli, 2014, page 224.
J. Roberts, The Lure of the Integers, page 53.
LINKS
E. T. Avanesov, Solution of a problem on figurate numbers (in Russian), Acta Arith. 12 1966/1967 pages 409-420.
Patrick De Geest, Palindromic Tetrahedrals
J. Roberts, The Lure of the Integers, pp. 53. (Annotated scanned copy)
Eric Weisstein's World of Mathematics, Tetrahedral Number
MAPLE
{seq(binomial(i, 3), i=0..100000) } intersect {seq(binomial(k, 2), k= 0..100000)}; # Zerinvary Lajos, Apr 26 2008
MATHEMATICA
With[{trno=Accumulate[Range[0, 1000]]}, Intersection[trno, Accumulate[ trno]]] (* Harvey P. Dale, May 25 2014 *)
PROG
(PARI) for(n=0, 1e3, if(ispolygonal(t=n*(n+1)*(n+2)/6, 3), print1(t", "))) \\ Charles R Greathouse IV, Apr 07 2013
CROSSREFS
Intersection of A000217 and A000292.
KEYWORD
nonn,fini,full
STATUS
approved
Numbers that are both square and tetrahedral.
+10
6
0, 1, 4, 19600
OFFSET
1,3
COMMENTS
A. J. J. Meyl proved in 1878 that only 1, 4 and 19600 are both square and tetrahedral. See link. [Bernard Schott, Dec 23 2012]
REFERENCES
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 600.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 165 (Rev. ed. 1997).
LINKS
A. J. J. Meyl, Question 1194, Nouvelles Annales de Mathématiques, 2ème série, tome 17 (1878), p. 464-467.
EXAMPLE
From Bernard Schott, Dec 23 2012: (Start)
If S(n) = n^2 and T(m) = m*(m+1)*(m+2)/6, then
-> S(1)= T(1) = 1;
-> S(2)= T(2) = 4;
-> S(140) = T(48) = 19600. (End)
MATHEMATICA
Select[Rest[FoldList[Plus, 0, Rest[FoldList[Plus, 0, Range[50000]]]]], IntegerQ[Sqrt[ # ]]&]
Intersection[Binomial[# + 2, 3]&/@Range[0, 10000], Range[0, 409000]^2] (* Harvey P. Dale, Feb 01 2011 *)
CROSSREFS
Intersection of A000290 and A000292.
KEYWORD
nonn,fini,full
STATUS
approved
Numbers such that 1+2+3...+a(n) = 1+4+9+...+r^2, for some r.
+10
4
1, 10, 13, 645
OFFSET
1,2
REFERENCES
Joe Roberts, Lure of the Integers, page 245 (entry for 645).
LINKS
R. Finkelstein, H. London, On triangular numbers which are sums of consecutive squares, J. Number Theory 4 (1972), 455-462.
EXAMPLE
1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10, so 10 is in the sequence.
CROSSREFS
KEYWORD
fini,full,nonn
AUTHOR
Jud McCranie, Mar 19 2000
STATUS
approved
Numbers k such that 1 + 4 + 9 + ... + k^2 = 1 + 2 + 3 + ... + m for some m.
+10
3
OFFSET
1,2
COMMENTS
These are the only possibilities for a sum of the first n squares to equal a triangular number.
From Seiichi Manyama, Aug 25 2019: (Start)
The complete list of solutions to k*(k+1)*(2*k+1)/6 = m*(m+1)/2 is as follows.
(k,m) = (-1, 0), (0, 0), (1, 1), (5, 10), (6, 13), (85, 645),
(-1,-1), (0,-1), (1,-2), (5,-11), (6,-14), (85,-646). (End)
REFERENCES
E. T. Avanesov, The Diophantine equation 3y(y+1) = x(x+1)(2x+1), Volz. Mat. Sb. Vyp., 8 (1971), 3-6.
R. K. Guy, Unsolved Problems in Number Theory, Section D3.
Joe Roberts, Lure of the Integers, page 245 (entry for 645).
LINKS
R. Finkelstein, H. London, On triangular numbers which are sums of consecutive squares, J. Number Theory 4 (1972), 455-462.
Eric Weisstein's World of Mathematics, Square Pyramidal Number
EXAMPLE
1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 2 + 3 + ... + 10, so 5 is in the sequence.
MAPLE
istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then RETURN(true) else RETURN(false); fi; end;
M:=1000; for n from 1 to M do if istriangular(n*(n+1)*(2*n+1)/6) then lprint(n, n*(n+1)*(2*n+1)/6); fi; od: # N. J. A. Sloane
# second Maple program:
q:= n-> issqr(8*sum(j^2, j=1..n)+1):
select(q, [$1..100])[]; # Alois P. Heinz, Oct 10 2024
MATHEMATICA
Select[Range[90], IntegerQ[(Sqrt[(4/3) * (# + 3 * #^2 + 2 * #^3) + 1] - 1)/2] &] (* Harvey P. Dale, Sep 22 2014 *)
CROSSREFS
Cf. A039596, A053612 (values of m).
KEYWORD
fini,full,nonn
AUTHOR
Jud McCranie, Mar 19 2000
EXTENSIONS
Edited by N. J. A. Sloane, May 25 2008
STATUS
approved
Consider pairs of nonnegative integers (m,k) such that 2^2 + 4^2 + 6^2 + ... + (2m)^2 = k(k+1); sequence gives k values.
+10
1
OFFSET
1,2
COMMENTS
The problem arises when trying to build a square pyramid out of dominoes. The solution (m,k) = (3,7) for example corresponds to building a pyramid with layers of sizes 2 X 2, 4 X 4 and 6 X 6 from one set of double-6 dominoes.
The three nonzero solutions use one double-3 set, one double-6 set and one double-83 set. (The sequence 3,6,83 is too short to warrant a separate entry.)
The problem is equivalent to finding integers (m,k) such that 2m(m+1)(m+2)/3 = k*(k+1). This is a nonsingular cubic, so by Siegel's theorem, there are only finitely many solutions. - N. J. A. Sloane, May 25 2008. See also the articles by Stroeker and Tzanakis and Stroeker and de Weger. (End)
LINKS
J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1992,
R. J. Stroeker and B. M. M. de Weger, Solving elliptic Diophantine equations: the general cubic case, Acta Arith. 87 (1999), 339-365.
R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196.
EXAMPLE
The known solutions are (m,k) = (0,0), (2,4), (3,7) and (17,84). There are no other solutions.
MAPLE
Simple-minded Maple program from N. J. A. Sloane:
f1:=m-> 1+8*m*(m+1)*(2*m+1)/3;
for m from 0 to 10^8 do if issqr(f1(m)) then lprint( m, (-1+sqrt(f1(m)))/2); fi; od;
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Ken Knowlton (www.KnowltonMosaics.com), Mar 29 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 25 2008, Aug 17 2008
May 26 2008: John Cannon used MAGMA to show there are no further solutions (see link)
STATUS
approved
Numbers that are both centered square and square pyramidal.
+10
1
1, 5, 42925, 1026745
OFFSET
1,2
COMMENTS
If it exists, a(5) > 10^29. - Bert Dobbelaere, Apr 12 2019
LINKS
Eric Weisstein's World of Mathematics, Centered Square Number
Eric Weisstein's World of Mathematics, Square Pyramidal Number
MATHEMATICA
csQ[n_] := IntegerQ[Sqrt[2*n-1]]; Select[Table[n(n+1)(2n+1)/6, {n, 0, 1000}], csQ] (* Amiram Eldar, Apr 11 2019 *)
CROSSREFS
Intersection of A000330 and A001844.
KEYWORD
nonn,more
AUTHOR
Ilya Gutkovskiy, Apr 10 2019
STATUS
approved

Search completed in 0.011 seconds