[go: up one dir, main page]

login
Search: a038917 -id:a038917
     Sort: relevance | references | number | modified | created      Format: long | short | data
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 39.
+10
1
1, 2, 1, 3, 2, 2, 2, 4, 1, 4, 0, 3, 1, 4, 2, 5, 0, 2, 2, 6, 2, 0, 2, 4, 3, 2, 1, 6, 0, 4, 2, 6, 0, 0, 4, 3, 0, 4, 1, 8, 2, 4, 0, 0, 2, 4, 0, 5, 3, 6, 0, 3, 0, 2, 0, 8, 2, 0, 0, 6, 2, 4, 2, 7, 2, 0, 2, 0, 2, 8, 0, 4, 0, 0, 3, 6, 0, 2, 0, 10, 1
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(39, d).
Multiplicative with a(p^e) = 1 if Kronecker(39, p) = 0 (p = 3 or 13), a(p^e) = (1+(-1)^e)/2 if Kronecker(39, p) = -1 (p is in A038918), and a(p^e) = e+1 if Kronecker(39, p) = 1 (p is in A038917 \ {3, 13}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*log(4*sqrt(39)+25)/sqrt(39) = 2.505443727103... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[39, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
PROG
(PARI) my(m = 39); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(39, d)); \\ Amiram Eldar, Nov 20 2023
CROSSREFS
KEYWORD
nonn,easy,mult
STATUS
approved

Search completed in 0.012 seconds