[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a034953 -id:a034953
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n*Product_{p prime, p|n} (p - 1)/2.
+10
1
1, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 30, 8, 136, 9, 171, 20, 63, 55, 253, 12, 50, 78, 27, 42, 406, 30, 465, 16, 165, 136, 210, 18, 666, 171, 234, 40, 820, 63, 903, 110, 90, 253, 1081, 24, 147, 50, 408, 156, 1378, 27, 550, 84, 513, 406, 1711, 60, 1830, 465, 189
FORMULA
a(prime(n)) = A034953(n).
p(p+1)(2p+1) where p is prime.
+10
1
30, 84, 330, 840, 3036, 4914, 10710, 14820, 25944, 51330, 62496, 105450, 142926, 164604, 214320, 306234, 421260, 465186, 615060, 731016, 794094, 1004880, 1164324, 1433790, 1853670, 2091306, 2217384, 2484540, 2625810, 2924214
CROSSREFS
Cf. A034953.
Prime partial sums of pentagonal numbers with prime indices.
+10
1
5, 17, 4957, 129277, 2826443, 3861083, 5126483, 9451573, 19811083, 53751743, 68136617, 98729003, 264616831, 388771421, 498157871, 608312141, 682548511, 779346653, 918754301, 1174179079, 1700023891, 2056298683, 2149703411
a(n) = T(p(n)) - p(T(n)) = Commutator[triangular numbers, primes] at n.
+10
1
1, 1, 2, -1, 19, 18, 46, 39, 79, 178, 179, 306, 394, 375, 469, 662, 887, 872, 1127, 1265, 1248, 1553, 1703, 2018, 2600, 2780, 2763, 2987, 2958, 3134, 4587, 4849, 5380, 5373, 6518, 6503, 7100, 7725, 8089, 8750, 9431, 9452, 10859, 10892, 11260, 11219, 13275, 15485, 15947, 15908, 16358, 17257, 17222, 19189
FORMULA
a(n) = A034953(n) - A011756(n).
CROSSREFS
Triangular numbers (A000217) with indices A000043.
+10
1
3, 6, 15, 28, 91, 153, 190, 496, 1891, 4005, 5778, 8128, 135981, 184528, 818560, 2427706, 2602621, 5176153, 9046131, 9783676, 46943205, 49416711, 62871291, 198751953, 235477551, 269340445, 990013753, 3718970646, 6105511756, 8718535225, 23347768186, 286403014380
CROSSREFS
Triangular numbers n*(n+1)/2 with n prime and n+1 nonprime.
+10
1
6, 15, 28, 66, 91, 153, 190, 276, 435, 496, 703, 861, 946, 1128, 1431, 1770, 1891, 2278, 2556, 2701, 3160, 3486, 4005, 4753, 5151, 5356, 5778, 5995, 6441, 8128, 8646, 9453, 9730, 11175, 11476, 12403, 13366, 14028, 15051, 16110, 16471, 18336, 18721, 19503, 19900, 22366, 24976, 25878
COMMENTS
This is A034953 without the 3. [From R. J. Mathar, Feb 21 2009]
a(n) is the number of positive integers of the form (n-3k)/(2k+1), 1 <= k <= (n-1)/5.
+10
1
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 3, 0, 1, 1, 0, 2, 1, 0, 0, 3, 2, 0, 1, 0, 0, 3, 2, 0, 2, 0, 2, 1, 0, 2, 1, 2, 0, 3, 0, 0, 5, 0, 0, 1, 0, 2, 3, 2, 1, 1, 2, 0, 1, 0, 2, 5, 0, 0, 1, 2, 2, 3, 0, 0, 3, 2, 0, 1, 2, 0, 5, 0, 1, 3, 0, 4, 1, 0, 0, 1
a(n) is the number of nontrivial positive divisors of 2n+3.
+10
1
0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 2, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 4, 2, 0, 2, 0, 0, 4, 2, 0, 3, 0, 2, 2, 0, 2, 2, 2, 0, 4, 0, 0, 6, 0, 0, 2, 0, 2, 4, 2, 1, 2, 2, 0, 2, 0, 2, 6, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 2, 2, 0, 6, 0, 1, 4, 0, 4, 2, 0, 0, 2
CROSSREFS
Sum of all numbers from n to n-th prime.
+10
1
3, 5, 12, 22, 56, 76, 132, 162, 240, 390, 441, 637, 783, 855, 1023, 1311, 1634, 1738, 2107, 2366, 2491, 2929, 3233, 3729, 4453, 4826, 5005, 5400, 5589, 6006, 7663, 8150, 8925, 9169, 10580, 10846, 11737, 12663, 13287, 14271, 15290, 15610, 17433, 17775
FORMULA
a(n) = A034953(n) - A000217(n-1). - Michel Marcus, Feb 02 2018
CROSSREFS
Least prime p such that f(0),...,f(n) are all primes, where f(0) = p, then f(i+1) = triangular(f(i))+1.
+10
1
3, 3, 43, 236367611, 31542795419
COMMENTS
Triangular(p) = p*(p+1)/2 (see A034953).
CROSSREFS

Search completed in 0.034 seconds