Displaying 1-9 of 9 results found.
page
1
Number of matroids: column 3 of A034327.
+20
1
0, 0, 0, 1, 2, 5, 9, 17, 29, 47, 72, 110
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Number of matroids: column 4 of A034327.
+20
1
0, 0, 0, 0, 1, 3, 9, 24, 60, 133, 279, 556
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Number of matroids: column 5 of A034327.
+20
1
0, 0, 0, 0, 0, 1, 4, 17, 60, 192, 556, 1514
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Number of matroids: column 6 of A034327.
+20
1
0, 0, 0, 0, 0, 0, 1, 5, 29, 133, 556, 2108
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Triangle read by rows: T(n,k) = number of loopless, regular k X n-matrix matroids of dimension k (or n-matroids of rank k).
+10
8
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 12, 11, 5, 1, 1, 7, 20, 26, 17, 6, 1, 1, 9, 33, 58, 52, 25, 7, 1, 1, 11, 52, 121, 146, 95, 35, 8, 1, 1, 13, 78, 240, 388, 334, 162, 47, 9, 1, 1, 15, 113, 454, 975, 1123, 710, 262, 61, 10, 1, 1, 18, 163, 835, 2365
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
EXAMPLE
1; 1,1; 1,2,1; 1,3,3,1; 1,4,6,4,1; 1,6,12,11,5,1; 1,7,20,26,17,6,1; ...
EXTENSIONS
Description corrected by Harald Fripertinger, Nov 14 2007
Number of matroids: column 3 of A034328.
+10
0
0, 0, 1, 3, 6, 12, 20, 33, 52, 78, 113, 163
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Number of matroids: column 4 of A034328.
+10
0
0, 0, 0, 1, 4, 11, 26, 58, 121, 240, 454, 835
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Number of matroids: column 5 of A034328.
+10
0
0, 0, 0, 0, 1, 5, 17, 52, 146, 388, 975, 2365
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Number of matroids: column 6 of A034328.
+10
0
0, 0, 0, 0, 0, 1, 6, 25, 95, 334, 1123, 3621
REFERENCES
Computed by Harald Fripertinger (fripert(AT)kfunigraz.ac.at).
Search completed in 0.004 seconds
|