[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a026780 -id:a026780
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; T(2,1)=2; for n >= 3 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if 1<=k<=(n-1)/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
+0
30
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 7, 4, 1, 1, 8, 17, 11, 5, 1, 1, 10, 31, 28, 16, 6, 1, 1, 12, 49, 76, 44, 22, 7, 1, 1, 14, 71, 156, 120, 66, 29, 8, 1, 1, 16, 97, 276, 352, 186, 95, 37, 9, 1, 1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1, 1, 20, 161, 668, 1504, 1674, 819, 413, 178, 56, 11, 1
OFFSET
0,5
COMMENTS
T(n, k) is the number of paths from (0, 0) to (k,n-k) in the directed graph having vertices (i, j) (i and j in range [0,n]) and edges (i,j)-to-(i+1,j) and (i,j)-to-(i,j+1) for i,j>=0 and edges (i,i+h)-to-(i+1,i+h+1) for i>=0, h>=1.
Also, square array R read by antidiagonals where R(i,j) = T(i+j,i), which is equal to the number of paths from (0,0) to (i,j) in the above graph. - Max Alekseyev, Dec 02 2015
LINKS
M. A. Alekseyev. On Enumeration of Dyck-Schroeder Paths. Journal of Combinatorial Mathematics and Combinatorial Computing 106 (2018), 59-68; arXiv:1601.06158 [math.CO], 2016-2018.
FORMULA
For n>=2*k, T(n,k) = coefficient of x^k in G(x)*S(x)^(n-2*k). For n<=2*k, T(n,k) = coefficient of x^(n-k) in G(x)*C(x)^(2*k-n). Here C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108, S(x)=(1-x - sqrt(1-6*x+x^2) )/(2*x) is o.g.f. for A006318, and G(x)=1/(1-x*(C(x)+S(x))) is o.g.f. for A026770. - Max Alekseyev, Dec 02 2015
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 7, 4, 1;
1, 8, 17, 11, 5, 1;
1, 10, 31, 28, 16, 6, 1;
1, 12, 49, 76, 44, 22, 7, 1;
1, 14, 71, 156, 120, 66, 29, 8, 1;
1, 16, 97, 276, 352, 186, 95, 37, 9, 1;
1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1;
MAPLE
A026769 := proc(n, k)
option remember;
if k= 0 or k =n then
1;
elif n= 2 and k= 1 then
2;
elif k <= (n-1)/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc: # R. J. Mathar, Jun 15 2014
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k <= (n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2017, from Maple *)
PROG
(PARI) T(n, k) = if(k==0 || k==n, 1, if(n==2 && k==1, 2, if( k<=(n-1)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )));
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 31 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 31 2019
(GAP)
T:= function(n, k)
if k=0 or k=n then return 1;
elif (n=2 and k=1) then return 2;
elif (k <= Int((n-1)/2)) then return T(n-1, k-1)+T(n-2, k-1) +T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Oct 31 2019
CROSSREFS
Cf. A026780 (a variant with h>=0)
KEYWORD
nonn,tabl
EXTENSIONS
Offset corrected by R. J. Mathar, Jun 15 2014
More terms added by G. C. Greubel, Oct 31 2019
STATUS
approved
a(n) = T(2n,n), T given by A026780.
+0
14
1, 3, 12, 53, 246, 1178, 5768, 28731, 145108, 741392, 3825418, 19907156, 104370554, 550816506, 2924018194, 15603778253, 83661779470, 450479003038, 2435009205992, 13208558795146, 71879906857596, 392320357251928, 2147102400154768, 11780181236675858, 64782405317073968, 357022158144941548
OFFSET
0,2
COMMENTS
Number of paths from (0,0) to (n,n) in the directed graph having vertices (i,j) and edges (i,j)-to-(i+1,j) and (i,j)-to-(i,j+1) for i,j>=0 and edges (i,i+h)-to-(i+1,i+h+1) for i>=0, h>=0.
LINKS
M. A. Alekseyev. On Enumeration of Dyck-Schroeder Paths. Journal of Combinatorial Mathematics and Combinatorial Computing 106 (2018), 59-68; arXiv:1601.06158 [math.CO], 2016-2018.
FORMULA
O.g.f.: S(x)/(1-x*C(x)*S(x)) = (S(x)-C(x))/(x*C(x)), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - Max Alekseyev, Jan 13 2015
D-finite with recurrence 2*n*(132*n-445)*(n+2)*(n+1)*a(n) -n*(n+1) *(5587*n^2 -23082*n +12800)*a(n-1) +2*n*(n-1)*(22870*n^2 -114505*n +116854)*a(n-2) +2*(-90081*n^4 +818062*n^3 -2626791*n^2 +3517598*n -1622544)*a(n-3) +4*(85519*n^4 -1071535*n^3 +4986308*n^2 -10177616*n +7647024)*a(n-4) +(-269235*n^4 +4490125*n^3 -27985152*n^2 +77217236*n -79534224)*a(n-5) +4*(2*n-11)*(8203*n^3 -117312*n^2 +557264*n -879984)*a(n-6) -4*(n-6)*(307*n -1414) *(2*n-11) *(2*n-13)*a(n-7)=0. - R. J. Mathar, Feb 20 2020
MAPLE
seq(coeff(series(2*(1-x -sqrt(1-6*x+x^2))/(4*x -(1 -sqrt(1-4*x))*(1 -x -sqrt(1-6*x+x^2))), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
CoefficientList[Series[2*(1-x -Sqrt[1-6*x+x^2])/(4*x -(1 -Sqrt[1-4*x])*(1 -x -Sqrt[1-6*x+x^2])), {x, 0, 30}], x] (* G. C. Greubel, Nov 02 2019 *)
PROG
(PARI) C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51) ))/2/x; Vec(S/(1-x*C*S)) /* Max Alekseyev, Jan 13 2015 */
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2*(1-x -Sqrt(1-6*x+x^2))/(4*x -(1 -Sqrt(1-4*x))*(1 -x -Sqrt(1-6*x+x^2))) )); // G. C. Greubel, Nov 02 2019
(Sage)
def A026781_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(2*(1-x -sqrt(1-6*x+x^2))/(4*x -(1 -sqrt(1-4*x))*(1 -x -sqrt(1-6*x+x^2)))).list()
A026781_list(30) # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
EXTENSIONS
More terms from Max Alekseyev, Jan 13 2015
STATUS
approved
a(n) = Sum_{k=0..n} T(n,k), T given by A026780.
+0
12
1, 2, 5, 11, 26, 58, 136, 306, 717, 1625, 3813, 8697, 20451, 46909, 110563, 254855, 602042, 1393746, 3299304, 7666786, 18182976, 42391546, 100704606, 235452416, 560147414, 1312916040, 3127406812, 7346213746, 17518138314, 41228281888, 98408997716, 231990850378, 554207752781, 1308436686305, 3128033585157
OFFSET
0,2
LINKS
FORMULA
O.g.f.: F(x^2)*(1/(1-x*S(x^2))+C(x^2)*x/(1-x*C(x^2))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108, S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318, and F(x)=S(x)/(1-x*C(x)*S(x)) is o.g.f. for A026781. - Max Alekseyev, Jan 13 2015
C(x^2)/(1-x*C(x^2)) above is the o.g.f. for A001405. 1/(1-x*S(x^2)) above is the o.g.f for A026003 starting with an additional 1: 1,1,1,3,5,13,25,... - R. J. Mathar, Feb 10 2022
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq( add(T(n, k), k=0..n), n=0..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
EXTENSIONS
More terms from Max Alekseyev, Jan 13 2015
STATUS
approved
a(n) = T(2n-1,n-1), T given by A026769. Also T(2n+1,n+1), T given by A026780.
+0
11
1, 4, 17, 76, 352, 1674, 8129, 40156, 201236, 1020922, 5234660, 27089726, 141335846, 742712598, 3927908193, 20891799036, 111688381228, 599841215226, 3234957053984, 17512055200470, 95125188934942, 518340392855286, 2832580291316092, 15520177744727766
OFFSET
1,2
LINKS
FORMULA
From Vladeta Jovovic, Nov 23 2003: (Start)
a(n) = A006318(n) - A000108(n).
G.f.: (sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2. (End)
From Paul Barry, May 19 2005: (Start)
a(n) = Sum_{k=0..n} C(n+k+1, n+1)*C(n+1, k)/(k+1).
a(n) = Sum_{k=0..n+1} C(n+2, k)*C(n+k, n+1)/(n+2). (End)
D-finite with recurrence n*(n+1)*a(n) -n*(11*n-7)*a(n-1) +(37*n^2-95*n+54)*a(n-2) +(-49*n^2+269*n-354)*a(n-3) +6*(9*n^2-71*n+138)*a(n-4) -4*(2*n-9)*(n-5)*a(n-5)=0. - R. J. Mathar, Aug 05 2021
MAPLE
seq(coeff(series((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
MATHEMATICA
Rest@CoefficientList[Series[(Sqrt[1-4*x] - Sqrt[1-6*x+x^2])/(2*x) -1/2, {x, 0, 30}], x] (* G. C. Greubel, Nov 01 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2) \\ G. C. Greubel, Nov 01 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-4*x) - Sqrt(1-6*x+x^2))/(2*x) -1/2 )); // G. C. Greubel, Nov 01 2019
(Sage)
def A026773_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2).list()
a=A026773_list(30); a[1:] # G. C. Greubel, Nov 01 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Binomial(n+1, k)*Binomial(n+k+1, n+1)/(k+1) )); # G. C. Greubel, Nov 01 2019
KEYWORD
nonn
STATUS
approved
a(n) = T(2n,n-1), T given by A026780.
+0
11
1, 7, 40, 217, 1158, 6150, 32656, 173719, 926664, 4958556, 26619438, 143365880, 774562478, 4197344582, 22810572062, 124300860689, 679081142350, 3718894341450, 20412141531664, 112276061739814, 618806031336236, 3416954495002676
OFFSET
1,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq(T(2*n, n-1), n=1..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[T[2*n, n-1], {n, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(2*n, n-1) for n in (1..30)] # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
STATUS
approved
a(n) = T(2n, n-2), T given by A026780.
+0
11
1, 11, 84, 557, 3446, 20514, 119336, 684227, 3886460, 21939528, 123347842, 691644044, 3871738018, 21652138770, 121026492186, 676391629701, 3780636102222, 21137831159462, 118234019051048, 661686074145618, 3705252204960252
OFFSET
2,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq(T(2*n, n-2), n=2..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[T[2*n, n-2], {n, 2, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(2*n, n-2) for n in (2..30)] # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
STATUS
approved
a(n) = T(2n-1, n-1), T given by A026780.
+0
11
1, 5, 24, 117, 580, 2916, 14834, 76221, 395048, 2063104, 10847078, 57373672, 305110106, 1630489090, 8751851866, 47166202181, 255128842340, 1384688987728, 7538592535170, 41159292861980, 225315261459390, 1236441650047554
OFFSET
1,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq(T(2*n-1, n-1), n=1..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[T[2*n-1, n-1], {n, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(2*n-1, n-1) for n in (1..30)] # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
STATUS
approved
a(n) = T(2n-1, n-2), T given by A026780.
+0
11
1, 9, 60, 361, 2076, 11672, 64842, 357897, 1968788, 10813804, 59372770, 326086492, 1792293014, 9861375614, 54324086446, 299651439321, 1655124211372, 9154654655044, 50704627346170, 281214708137032, 1561706813618886
OFFSET
2,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq(T(2*n-1, n-2), n=2..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[T[2*n-1, n-2], {n, 2, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(2*n-1, n-2) for n in (2..30)] # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
STATUS
approved
a(n) = T(n, floor(n/2)), T given by A026780.
+0
11
1, 1, 3, 5, 12, 24, 53, 117, 246, 580, 1178, 2916, 5768, 14834, 28731, 76221, 145108, 395048, 741392, 2063104, 3825418, 10847078, 19907156, 57373672, 104370554, 305110106, 550816506, 1630489090, 2924018194, 8751851866
OFFSET
0,3
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq(T(n, floor(n/2)), n=0..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[T[n, Floor[n/2]], {n, 0, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(n, floor(n/2)) for n in (0..30)] # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
STATUS
approved
a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026780.
+0
11
1, 1, 4, 6, 20, 34, 105, 191, 563, 1071, 3057, 6007, 16745, 33729, 92332, 189662, 511812, 1068178, 2849404, 6025594, 15921514, 34043204, 89242582, 192621212, 501574732, 1091400122, 2825710822, 6192005260, 15952433940, 35172854946
OFFSET
0,3
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k =n then 1;
elif k <= n/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
fi ;
end proc:
seq( add(T(n, k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Nov 02 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
Table[Sum[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Nov 02 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Nov 02 2019
KEYWORD
nonn
STATUS
approved

Search completed in 0.020 seconds