[go: up one dir, main page]

login
Search: a025564 -id:a025564
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = T(n,n-1), where T is array defined in A025564.
+20
15
1, 2, 4, 10, 26, 70, 192, 534, 1500, 4246, 12092, 34606, 99442, 286730, 829168, 2403834, 6984234, 20331558, 59287740, 173149662, 506376222, 1482730098, 4346486256, 12754363650, 37461564504, 110125172682, 323990062452, 953883382354
OFFSET
1,2
COMMENTS
a(n+1) is the number of UDU-free paths of n upsteps (U) and n downsteps (D), n>=0. - David Callan, Aug 19 2004
Hankel transform is A120580. - Paul Barry, Mar 26 2010
If interpreted with offset 0, the inverse binomial transform of A006134 - Gary W. Adamson, Nov 10 2007
Also the number of different integer sets { k_1, k_2, ..., k_(i+1) } with Sum_{j=1..i+1} k_j = i and k_j >= 0, see the "central binomial coefficients" (A000984), without all sets in which any two successive k_j and k_(j+1) are zero. See the partition problem eq. 3.12 on p. 19 in my dissertation below. - Eva Kalinowski, Oct 18 2012
LINKS
Kassie Archer and Christina Graves, A new statistic on Dyck paths for counting 3-dimensional Catalan words, arXiv:2205.09686 [math.CO], 2022.
Andrei Asinowski and Cyril Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
D. Baccherini, D. Merlini, and R. Sprugnoli, Binary words excluding a pattern and proper Riordan arrays, Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See page 1034. - N. J. A. Sloane, Mar 25 2014
J. L. Jacobsen and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760; arXiv:cond-mat/0407444, 2004-2006. Mentions this sequence. - N. J. A. Sloane, Mar 14 2014
Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
FORMULA
G.f.: x*sqrt((1+x)/(1-3*x)).
a(n) = 2*A005773(n-1) for n > 1.
a(n) = |A085455(n-1)| = A025577(n) - A025577(n-1) = A002426(n) + A002426(n-1).
Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*a(j)*a(i-j) = 3^n. - Mario Catalani (mario.catalani(AT)unito.it), Jul 02 2003
a(1) = 1, a(n) = M(n-1) + Sum_{k=1..n-1} M(k-1)*a(n-k) with M=A001006, the Motzkin Numbers. - Reinhard Zumkeller, Mar 30 2012
D-finite with recurrence: (-n+1)*a(n) +2*(n-1)*a(n-1) +3*(n-3)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
G.f.: G(0), where G(k) = 1 + 4*x*(4*k+1)/( (1+x)*(4*k+2) - x*(1+x)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1+x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) = n*hypergeom([2-n, 1/2-n/2, 1-n/2], [2, -n], 4). - Peter Luschny, Jul 12 2016
a(n) = (-1)^n*2*hypergeom([3/2, 2-n], [2], 4) for n > 1. - Peter Luschny, Jan 30 2017
EXAMPLE
G.f. = x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 70*x^6 + 192*x^7 + 534*x^8 + ...
MAPLE
seq( add(binomial(i-2, k)*(binomial(i-k, k+1)), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
# Alternatively:
a := n -> `if`(n=1, 1, 2*(-1)^n*hypergeom([3/2, 2-n], [2], 4)):
seq(simplify(a(n)), n=1..28); # Peter Luschny, Jan 30 2017
MATHEMATICA
T[_, 0] = 1; T[1, 1] = 2; T[n_, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[_, _] = 0;
a[n_] := T[n-1, n-1];
Array[a, 30] (* Jean-François Alcover, Jul 30 2018 *)
PROG
(Haskell)
a025565 n = a025565_list !! (n-1)
a025565_list = 1 : f a001006_list [1] where
f (x:xs) ys = y : f xs (y : ys) where
y = x + sum (zipWith (*) a001006_list ys)
-- Reinhard Zumkeller, Mar 30 2012
(Sage)
def A():
a, b, n = 1, 1, 1
yield a
while True:
yield a + b
n += 1
a, b = b, ((3*(n-1))*a+(2*n-1)*b)//n
A025565 = A()
print([next(A025565) for _ in range(28)]) # Peter Luschny, Jan 30 2017
CROSSREFS
First column of A097692.
Partial sums of A105696.
KEYWORD
nonn
EXTENSIONS
Incorrect statement related to A000984 (see A002426) and duplicate of the g.f. removed by R. J. Mathar, Oct 16 2009
Edited by R. J. Mathar, Aug 09 2010
STATUS
approved
a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = sum of numbers in row n+1 of the array T defined in A026105. Also a(n) = T(n,n), where T is the array defined in A025564.
+20
9
1, 1, 1, 3, 8, 22, 61, 171, 483, 1373, 3923, 11257, 32418, 93644, 271219, 787333, 2290200, 6673662, 19478091, 56930961, 166613280, 488176938, 1431878079, 4203938697, 12353600427, 36331804089, 106932444885, 314946659951, 928213563878
OFFSET
0,4
COMMENTS
a(n+1) is the number of Motzkin (2n)-paths whose last weak valley occurs immediately after step n. A weak valley in a Motzkin path (A001006) is an interior vertex whose following step has nonnegative slope and whose preceding step has nonpositive slope. For example, the weak valleys in the Motzkin path F.UF.FD.UD occur after the first, third and fifth steps as indicated by the dots (U=upstep of slope 1, D=downstep of slope -1, F=flatstep of slope 0) and, with n=2, a(3)=3 counts FFUD, UDUD, UFFD. - David Callan, Jun 07 2006
Starting with offset 2: (1, 3, 8, 22, 61, 171, 483, ...), = row sums of triangle A136537. - Gary W. Adamson, Jan 04 2008
LINKS
Jean-Luc Baril, Richard Genestier, Sergey Kirgizov, Pattern distributions in Dyck paths with a first return decomposition constrained by height, arXiv:1911.03119 [math.CO], 2019.
C. Dalfó, M. A. Fiol, and N. López, New results for the Mondrian art problem, arXiv:2007.09639 [math.CO], 2020.
D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From N. J. A. Sloane, May 11 2012
Christian Krattenthaler, Daniel Yaqubi, Some determinants of path generating functions, II, arXiv:1802.05990 [math.CO], 2018; Adv. Appl. Math. 101 (2018), 232-265.
Donatella Merlini, Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
FORMULA
G.f.: x + 2*x*(x-1)/(1-3x-sqrt(1-2x-3x^2)); for n > 1, first differences of the "directed animals" sequence A005773: a(n) = A005773(n) - A005773(n-1). - Emeric Deutsch, Aug 16 2002
Starting (1, 3, 8, 22, 61, 171, ...) gives the inverse binomial transform of A001791 starting (1, 4, 15, 56, 210, 792, ...). - Gary W. Adamson, Sep 01 2007
a(n) is the sum of the (n-2)-th row of triangle A131816. - Gary W. Adamson, Sep 01 2007
D-finite with recurrence n*a(n) +(-3*n+2)*a(n-1) +(-n+2)*a(n-2) +3*(n-4)*a(n-3)=0. - R. J. Mathar, Sep 15 2020
MAPLE
seq( sum('binomial(i-2, k)*binomial(i-k, k)', 'k'=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
MATHEMATICA
CoefficientList[Series[x+(2x(x-1))/(1-3x-Sqrt[1-2x-3x^2]), {x, 0, 30}], x] (* Harvey P. Dale, Jun 12 2016 *)
PROG
(GAP) List([0..30], i->Sum([0..Int(i/2)], k->Binomial(i-2, k)*Binomial(i-k, k))); # Muniru A Asiru, Mar 09 2019
CROSSREFS
First differences of A026135. Row sums of triangle A026105.
Pairwise sums of A005727. Column k=2 in A115990.
Cf. A136537.
KEYWORD
nonn
STATUS
approved
a(n) = T(n,n+2) where T is the array defined in A025564.
+20
3
1, 5, 19, 65, 211, 665, 2058, 6294, 19095, 57607, 173096, 518596, 1550367, 4627455, 13795176, 41088456, 122297643, 363828663, 1081966875, 3216725841, 9561635853, 28418162003, 84455354206, 250982289650, 745860104145, 2216567725281
OFFSET
1,2
CROSSREFS
First differences are pairwise sums of A025181.
Pairwise sums of A014532.
KEYWORD
nonn
STATUS
approved
a(n) = T(n,n+1), where T is the array defined in A025564.
+20
2
1, 4, 13, 40, 120, 356, 1050, 3088, 9069, 26620, 78133, 229384, 673699, 1979628, 5820195, 17121312, 50394579, 148413996, 437324919, 1289330520, 3803175474, 11223840012, 33139076292, 97889042384, 289276841475, 855205791076, 2529279459099
OFFSET
1,2
LINKS
Jean-Luc Baril, Richard Genestier, Sergey Kirgizov, Pattern distributions in Dyck paths with a first return decomposition constrained by height, arXiv:1911.03119 [math.CO], 2019.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
FORMULA
G.f.: (x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3). - Mark van Hoeij, May 01 2013
Conjecture: (n+3)*a(n) +4*(-n-2)*a(n-1) +2*a(n-2) +8*(n-1)*a(n-3) +3*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 03 2015
Conjecture: (n-1)*(n-2)*(n+3)*a(n) -2*n*(n-2)*(n+2)*a(n-1) -3*n*(n-1)^2*a(n-2)=0. - R. J. Mathar, Apr 03 2015
a(n) ~ 2 * 3^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 02 2024
MATHEMATICA
T[_, 0] = 1; T[1, 1] = 2; T[n_, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[_, _] = 0;
a[n_] := T[n+1, n+3];
Array[a, 27] (* Jean-François Alcover, Oct 30 2018 *)
PROG
(PARI) x='x+O('x^66); Vec((x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3)) \\ Joerg Arndt, May 01 2013
CROSSREFS
Pairwise sums of A014531.
KEYWORD
nonn
STATUS
approved
T(2n,n+1), where T is the array defined in A025564.
+20
1
1, 10, 61, 356, 2058, 11892, 68860, 399828, 2328066, 13591364, 79538750, 466489520, 2741310614, 16137748980, 95152639095, 561856988100, 3322001296650, 19664909435556, 116535288360106, 691284470658376, 4104450497833036, 24390520567203960, 145053186645586383
OFFSET
1,2
COMMENTS
Coefficient of y^(n+1) in (y^2+2*y+1)*(y^2+y+1)^(2*n-2). - Robert Israel, Sep 07 2019
LINKS
MAPLE
f:= n -> coeff((y^2+2*y+1)*(y^2+y+1)^(2*n-2), y, n+1);
map(f, [$1..30]); # Robert Israel, Sep 07 2019
CROSSREFS
Cf. A025564.
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Sep 07 2019
STATUS
approved
T(2n-1,n), where T is the array defined in A025564.
+20
0
1, 4, 22, 120, 665, 3732, 21153, 120835, 694590, 4013088, 23284424, 135580865, 791862354, 4637009300, 27215510265, 160053426720, 942939231825, 5564024727096, 32878367902380, 194530139772844, 1152303896900338, 6832908809693304, 40556775927067299, 240938382783554100
OFFSET
1,2
PROG
(PARI) T(n, k) = if( k<0 || k>2*n, 0, if(n==0, 1, polcoeff( (1 + x + x^2)^n, k)+ polcoeff( (1 + x + x^2)^(n-1), k-1)));
a(n) = T(2*n, n+1); \\ Michel Marcus, Sep 08 2019
CROSSREFS
Cf. A025564.
KEYWORD
nonn
EXTENSIONS
a(19) corrected and more terms from Sean A. Irvine, Sep 07 2019
STATUS
approved
a(n) = T(2n,n), where T is the array defined in A025564.
+20
0
1, 2, 8, 40, 211, 1148, 6369, 35816, 203424, 1164228, 6703372, 38785840, 225325940, 1313494396, 7679038865, 45006411960, 264357297375, 1555762562100, 9171399730944, 54148782940112, 320136500713070, 1895036382245032, 11230166960501463, 66619011999761208, 395563260817743219
OFFSET
1,2
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Sep 07 2019
STATUS
approved
a(n) = T(3n,n), where T is the array defined in A025564.
+20
0
1, 3, 19, 140, 1090, 8749, 71604, 593997, 4976785, 42016975, 356879250, 3046096983, 26105109424, 224485080580, 1936029865870, 16738879226139, 145041018993018, 1259189426140919, 10950454909118725, 95374995078513150, 831822673255797630, 7263789225782699928
OFFSET
1,2
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Sep 07 2019
STATUS
approved
a(n) = T(4n,n), where T is the array defined in A025564.
+20
0
1, 4, 34, 330, 3381, 35700, 384307, 4193020, 46203670, 513011312, 5730482707, 64324536822, 724966763955, 8198552413800, 92985865982415, 1057267681773972, 12047638469222921, 137547814582468048, 1573060924386848400, 18017644508154675426, 206653990802794950415
OFFSET
1,2
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Sep 07 2019
STATUS
approved
a(n) = T(2n,n-1), where T is the array defined in A025564.
+20
0
1, 4, 19, 98, 526, 2892, 16159, 91338, 520794, 2989688, 17256275, 100046894, 582204290, 3398722420, 19894375665, 116724946350, 686260868346, 4042058735880, 23846068472626, 140882925528892, 833421929615236, 4936088399361876, 29266184138206509, 173689743532678182
OFFSET
1,2
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Sep 07 2019
STATUS
approved

Search completed in 0.015 seconds