[go: up one dir, main page]

login
Search: a024898 -id:a024898
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A024899(n)-A024898(n).
+20
1
0, 0, 0, 1, 1, 0, 2, 2, 2, 1, 2, 2, 1, 3, 4, 3, 3, 2, 2, 3, 3, 3, 4, 0, 1, 5, 4, 4, 7, 7, 8, 7, 6, 8, 4, 4, 6, 4, 5, 5, 3, 4, 3, 6, 6, 9, 10, 9, 11, 11, 13, 8, 8, 8, 7, 8, 10, 9, 8, 10, 12, 12, 10, 11, 9, 8, 7, 8, 8, 5, 7, 6, 8, 7, 8, 9, 9, 13, 13, 11, 11, 12, 13, 11, 12, 13, 9, 11, 10, 11, 10, 6, 9
OFFSET
1,7
COMMENTS
From Zak Seidov, Nov 12 2008: (Start)
Conjecture: a(n) > 0, except n=1,2,3,6,24, when a(n)=0.
This fact can be apparently explained by existence of twin primes. (End)
LINKS
Zak Seidov, A024899(n) > A024898(n) [From Zak Seidov, Nov 12 2008]
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Zak Seidov, Apr 18 2008
STATUS
approved
Primes of the form 6k-1.
(Formerly M3809)
+10
128
5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
OFFSET
1,1
COMMENTS
For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
F. S. Carey, On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312.
Amelia Carolina Sparavigna, The Pentagonal Numbers and their Link to an Integer Sequence which contains the Primes of Form 6n-1, Politecnico di Torino (Italy, 2021).
Amelia Carolina Sparavigna, Binary operations inspired by generalized entropies applied to figurate numbers, Politecnico di Torino (Italy, 2021).
FORMULA
A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021
MAPLE
select(isprime, [seq(6*n-1, n=1..100)]); # Muniru A Asiru, May 19 2018
MATHEMATICA
Select[6 Range[100]-1, PrimeQ] (* Harvey P. Dale, Feb 14 2011 *)
PROG
(PARI) forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Haskell)
a007528 n = a007528_list !! (n-1)
a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
-- Reinhard Zumkeller, Jul 13 2012
(GAP) Filtered(List([1..100], n->6*n-1), IsPrime); # Muniru A Asiru, May 19 2018
CROSSREFS
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).
KEYWORD
nonn,easy
STATUS
approved
Numbers m such that 6m-1, 6m+1 are twin primes.
(Formerly M0641 N0235)
+10
91
1, 2, 3, 5, 7, 10, 12, 17, 18, 23, 25, 30, 32, 33, 38, 40, 45, 47, 52, 58, 70, 72, 77, 87, 95, 100, 103, 107, 110, 135, 137, 138, 143, 147, 170, 172, 175, 177, 182, 192, 205, 213, 215, 217, 220, 238, 242, 247, 248, 268, 270, 278, 283, 287, 298, 312, 313, 322, 325
OFFSET
1,2
COMMENTS
6m-1 and 6m+1 are twin primes iff m is not of the form 6ab +- a +- b. - Jon Perry, Feb 01 2002
The above equivalence was rediscovered by Balestrieri, see link. - Charles R Greathouse IV, Jul 05 2011
Even terms correspond to twin primes of the form (4k - 1, 4k + 1), odd terms to twin primes of the form (4k + 1, 4k + 3). - Lekraj Beedassy, Apr 03 2002
From Bob Selcoe, Nov 28 2014: (Start)
Except for a(1)=1, all numbers in this sequence are congruent to (0, 2 or 3) mod 5.
It appears that when a(n)=6j, then j is also in the sequence (e.g., 138 = 6*23; 312 = 6*52). This also appears to hold for sequence A191626. If true, then it suggests that when seeking large twin primes, good candidates might be 36*a(n) +- 1, n >= 2.
Conjecture: There is at least one number in the sequence in the interval [5k, 7k] inclusive, k >= 1. If true, then the twin prime conjecture also is true.
(End)
A counterexample to "It appears that ...": Take j = 63. Then 6j = 378 and 36j = 2268. Now 379, 2267, and 2269 are prime, but 377 = 13 * 29. The sequence of counterexamples is A263282. - Jason Kimberley, Oct 13 2015
Dinculescu calls all terms in the sequence "twin ranks", and all other positive integers "non-ranks", see links. Non-ranks are given by the formula kp +- round(p/6) for positive integers k and primes p > 4, while twin ranks (this sequence) cannot be represented as kp +- round(p/6) for any k, p > 4. Here round(p/6) is the nearest integer to p/6. - Alexei Kourbatov, Jan 03 2015
Number of terms less than 10^k: 0, 5, 25, 142, 810, 5330, 37915, ... - Muniru A Asiru, Jan 24 2018
6m-1 and 6m+1 are twin primes iff 36m^2-1 is semiprime. It is algebraically provable that 36m^2-1 having any factor of the form 6k+-1 is equivalent to the statement that m is congruent to +-k (mod (6k+-1)). Other than the trivial case m=k, the fact of such a congruence means 36m^2-1 has a factor other than 6m-1 and 6m+1, and is not semiprime. Thus, {a(n)} lists the numbers m such that for all k < m, m is not congruent to +-k modulo (6k+-1). This is an alternative formulation of the results of Dinculescu referenced above. - Keith Backman, Apr 25 2021
Other than a(1)=1, it is provable that a(n) is not a square unless it is a multiple of 5, and a(n) is not a cube unless it is a multiple of 7. Examples of the former include a(11)=5^2=25, a(26)=10^2=100, and a(166)=35^2=1225; examples of the latter are rarer, including a(1531)=28^3=21952 and a(4163)=42^3=74088. - Keith Backman, Jun 26 2021
REFERENCES
W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 69.
W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 120.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Balestrieri, An Equivalent Problem To The Twin Prime Conjecture, arXiv:1106.6050v1 [math.GM], 2011.
A. Dinculescu, On Some Infinite Series Related to the Twin Primes, The Open Mathematics Journal, 5 (2012), 8-14.
A. Dinculescu, The Twin Primes Seen from a Different Perspective, The British Journal of Mathematics & Computer Science, 3 (2013), Issue 4, 691-698.
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
S. W. Golomb, Problem E969, Solution, Amer. Math. Monthly, 58 (1951), 338; 59 (1952), 44.
Matthew A. Myers, Comments on A002822, Letter to N. J. A. Sloane, Dec 04 2018
FORMULA
a(n) = A014574(n+1)/6. - Ivan N. Ianakiev, Aug 19 2013
MAPLE
select(n -> isprime(6*n-1) and isprime(6*n+1), [$1..1000]); # Robert Israel, Jan 11 2015
MATHEMATICA
Select[ Range[350], PrimeQ[6# - 1] && PrimeQ[6# + 1] & ]
Select[Range[400], AllTrue[6#+{1, -1}, PrimeQ]&] (* Harvey P. Dale, Jul 27 2022 *)
#/6&/@Select[Range[6, 2500, 6], AllTrue[#+{1, -1}, PrimeQ]&] (* Harvey P. Dale, Mar 31 2023 *)
PROG
(Magma) [n: n in [1..200] | IsPrime(6*n+1) and IsPrime(6*n-1)] // Vincenzo Librandi, Nov 21 2010
(PARI) select(primes(100), n->isprime(n-2)&&n>5)\6 \\ Charles R Greathouse IV, Jul 05 2011
(PARI) p=5; forprime(q=5, 1e4, if(q-p==2, print1((p+1)/6", ")); p=q); \\ Altug Alkan, Oct 13 2015
(PARI) list(lim)=my(v=List(), p=5); forprime(q=7, 6*lim+1, if(q-p==2, listput(v, q\6)); p=q); Vec(v) \\ Charles R Greathouse IV, Dec 03 2016
(Haskell)
a002822 n = a002822_list !! (n-1)
a002822_list = f a000040_list where
f (q:ps'@(p:ps)) | p > q + 2 || r > 0 = f ps'
| otherwise = y : f ps where (y, r) = divMod (q + 1) 6
-- Reinhard Zumkeller, Jul 13 2014
CROSSREFS
Complement of A067611.
Intersection of A024898 and A024899.
A191626 is a subsequence.
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001
STATUS
approved
Numbers k such that 6*k - 1 is composite.
+10
13
6, 11, 13, 16, 20, 21, 24, 26, 27, 31, 34, 35, 36, 37, 41, 46, 48, 50, 51, 54, 55, 56, 57, 61, 62, 63, 66, 68, 69, 71, 73, 76, 79, 81, 83, 86, 88, 89, 90, 91, 92, 96, 97, 101, 102, 104, 105, 106, 111, 112, 115, 116, 118, 119, 121, 122, 123, 125, 126, 128
OFFSET
1,1
COMMENTS
These numbers can be written as 6*x*y + x - y for x > 0, y > 0. - Ron R Spencer, Aug 01 2016
LINKS
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Aug 01 2016
EXAMPLE
a(1)=6 because 6*6 - 1 = 35, which is composite.
MAPLE
remove(k-> isprime(6*k-1), [$1..130])[]; # Muniru A Asiru, Feb 22 2019
MATHEMATICA
Select[Range[200], !PrimeQ[6#-1]&] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2011 *)
PROG
(Haskell)
a046953 n = a046953_list !! (n-1)
a046953_list = map (`div` 6) $
filter ((== 0) . a010051' . subtract 1) [6, 12..]
-- Reinhard Zumkeller, Jul 13 2014
(PARI) is(n)=!isprime(6*n-1) \\ Charles R Greathouse IV, Aug 01 2016
(Magma) [n: n in [1..200] | not IsPrime(6*n-1)]; // G. C. Greubel, Feb 21 2019
(Sage) [n for n in (1..200) if not is_prime(6*n-1)] # G. C. Greubel, Feb 21 2019
(GAP) Filtered([1..200], k-> not IsPrime(6*k-1)) # G. C. Greubel, Feb 21 2019
CROSSREFS
Cf. A046954, A008588, A016969, subsequence of A067611.
Cf. A024898 (complement).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that 6n+1 and 6n+5 are both primes.
+10
12
1, 2, 3, 6, 7, 11, 13, 16, 17, 18, 21, 27, 32, 37, 38, 46, 51, 52, 58, 63, 66, 73, 76, 77, 81, 83, 102, 107, 112, 123, 126, 128, 137, 142, 143, 146, 147, 151, 156, 161, 168, 181, 182, 202, 213, 216, 217, 237, 238, 241, 247, 248, 258, 261, 263, 266, 268, 277, 282
OFFSET
1,2
COMMENTS
Note that if prime p>3 then p mod 6 = 1 or 5.
LINKS
FORMULA
a(n) = (A023200(n+1)-1)/6 = (A046132(n+1)-5)/6 = A047847(n+1)/3
a(n) = floor(A087679(n+1)/6). - M. F. Hasler, Apr 05 2017
EXAMPLE
a(2)=2 since 6*2+1=13 and 6*2+5=17 are both prime.
MATHEMATICA
Select[Range[300], And @@ PrimeQ /@ ({1, 5} + 6#) &] (* Ray Chandler, Jun 29 2008 *)
PROG
(PARI) is(n)=isprime(n*6+1)&&isprime(n*6+5) \\ M. F. Hasler, Apr 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 18 2000
EXTENSIONS
Edited by N. J. A. Sloane, Nov 07 2006
STATUS
approved
Numbers n such that 12n + 1 is prime.
+10
11
1, 3, 5, 6, 8, 9, 13, 15, 16, 19, 20, 23, 26, 28, 29, 31, 33, 34, 35, 36, 38, 45, 48, 50, 51, 55, 56, 59, 61, 63, 64, 69, 71, 73, 78, 83, 84, 85, 86, 89, 91, 93, 94, 96, 100, 101, 103, 104, 108, 110, 115, 119, 121, 124, 129, 133, 134, 135, 138, 139, 141, 145, 146, 148
OFFSET
1,2
COMMENTS
Corresponds to even numbers in A024898. - Michael B. Porter, Oct 27 2009
LINKS
EXAMPLE
If n=96 then 12*n + 1 = 1153 (prime).
MATHEMATICA
Select[Range[150], PrimeQ[12#+1]&] (* Harvey P. Dale, Jul 17 2018 *)
PROG
(Magma) [ n: n in [1..150] | IsPrime(12*n+1) ]; // Klaus Brockhaus, Jan 02 2009
(PARI) isA110801(n) = isprime(12*n+1) \\ Michael B. Porter, Oct 27 2009
CROSSREFS
Cf. A167055, A167056, A167057, A024898; primes are in A068228. - Michael B. Porter, Oct 27 2009
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Oct 20 2005
EXTENSIONS
More terms from Klaus Brockhaus, Jan 02 2009
STATUS
approved
Primes p such that 6*p-1 is also prime.
+10
10
2, 3, 5, 7, 17, 19, 23, 29, 43, 47, 53, 59, 67, 103, 107, 109, 113, 127, 137, 157, 163, 197, 199, 227, 229, 239, 269, 283, 313, 317, 347, 359, 373, 379, 383, 389, 397, 439, 443, 449, 457, 463, 467, 523, 569, 577, 593, 599, 613, 617, 647, 653, 709, 733, 743, 773
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[(6 # - 1)]&] (* Vincenzo Librandi, Apr 14 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(800) | IsPrime(6*p-1)]; // Vincenzo Librandi, Apr 14 2013
CROSSREFS
Cf. A005382 for the type 2p-1, A062737 for 4p-1, A158016 for 8p-1, A158017 for 10p-1.
Primes in A024898, i.e., intersection of A024898 with A000040.
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 11 2009
EXTENSIONS
Edited by the Associate Editors of the OEIS, Apr 22 2009
STATUS
approved
Numbers n such that 6*n-1 is prime while 6*n+1 is composite.
+10
7
4, 8, 9, 14, 15, 19, 22, 28, 29, 39, 42, 43, 44, 49, 53, 59, 60, 64, 65, 67, 74, 75, 78, 80, 82, 84, 85, 93, 94, 98, 99, 108, 109, 113, 114, 117, 120, 124, 127, 129, 133, 140, 144, 148, 152, 155, 157, 158, 159, 162, 163, 164, 169, 183, 184, 185, 194, 197, 198, 199
OFFSET
1,1
COMMENTS
Entries of A024898 which are not in A002822 or equivalently, entries of A046954 which are not in A060461.
LINKS
MATHEMATICA
Select[Range[200], PrimeQ[6# -1] && !PrimeQ[6# +1] &] (* Ray Chandler, Aug 22 2006 *)
PROG
(PARI) for(n=1, 250, if(isprime(6*n-1) && !isprime(6*n+1), print1(n", "))) \\ G. C. Greubel, Feb 20 2019
(Magma) [n: n in [1..250] | IsPrime(6*n-1) and not IsPrime(6*n+1)]; // G. C. Greubel, Feb 20 2019
(Sage)[n for n in (1..250) if is_prime(6*n-1) and not is_prime(6*n+1)] # G. C. Greubel, Feb 20 2019
(GAP) Filtered([1..250], k-> IsPrime(6*k-1) and not IsPrime(6*k+1)) # G. C. Greubel, Feb 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Aug 20 2006
EXTENSIONS
Extended by Ray Chandler, Aug 22 2006
STATUS
approved
a(n) = 1 iff 6n-1 is prime.
+10
6
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0
OFFSET
1,1
EXAMPLE
a(5) = 1 because 6*5-1 is prime, a(6) = 0 since 6*6-1 is composite.
MATHEMATICA
Table[If[PrimeQ[6 n - 1], 1, 0], {n, 100}] (* Vincenzo Librandi, Jan 19 2019 *)
PROG
(PARI) a(n) = isprime(6*n-1); \\ Michel Marcus, Jan 19 2019
(Magma) [IsPrime(6*n-1) select 1 else 0: n in[1..100]]; // Vincenzo Librandi, Jan 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Washington Bomfim, Oct 27 2009
STATUS
approved
a(n) is the smallest prime factor of 6*n-1 that is congruent to 5 modulo 6.
+10
5
5, 11, 17, 23, 29, 5, 41, 47, 53, 59, 5, 71, 11, 83, 89, 5, 101, 107, 113, 17, 5, 131, 137, 11, 149, 5, 23, 167, 173, 179, 5, 191, 197, 29, 11, 5, 17, 227, 233, 239, 5, 251, 257, 263, 269, 5, 281, 41, 293, 23, 5, 311, 317, 17, 47, 5, 11, 347, 353, 359, 5, 53, 29, 383, 389, 5
OFFSET
1,1
COMMENTS
From Robert Israel, Jan 18 2023: (Start)
a(n) = 5 if n == 1 (mod 5).
a(n) = 6*n - 1 if n is in A024898. (End)
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 2, Section 2, Problem 96.
LINKS
EXAMPLE
For n = 13, 6*n - 1 = 77 = 7*11; 7 == 1 (mod 6), but 11 == 5 (mod 6), so a(13) = 11.
MAPLE
f:= n -> min(select(p -> p mod 6 = 5, numtheory:-factorset(6*n-1))):
map(f, [$1..100]); # Robert Israel, Jan 18 2023
PROG
(PARI) for(k=1, 60, my(f=factor(6*k-1)[, 1]); for(j=1, #f, if(f[j]%6==5, print1(f[j], ", "); break))) \\ Hugo Pfoertner, Dec 25 2019
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Aug 20 2005
STATUS
approved

Search completed in 0.013 seconds