[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a024145 -id:a024145
     Sort: relevance | references | number | modified | created      Format: long | short | data
2^n-n^5.
+10
2
1, 1, -28, -235, -1008, -3093, -7712, -16679, -32512, -58537, -98976, -159003, -244736, -363101, -521440, -726607, -983040, -1288785, -1627424, -1951811, -2151424, -1986949, -959328, 1952265, 8814592, 23788807, 55227488, 119868821, 251225088
OFFSET
0,3
LINKS
FORMULA
G:f.: (1-7*x-9*x^2-34*x^3+121*x^4+45*x^5+3*x^6) / ((1-2*x)*(1-x)^6). - Vincenzo Librandi, Oct 07 2014
a(n) = 8*a(n-1) -27*a(n-2) +50*a(n-3) -55*a(n-4) +36*a(n-5) -13*a(n-6) +2*a(n-7) for n>6. - Vincenzo Librandi, Oct 07 2014
MATHEMATICA
Table[2^n - n^5, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 7 x - 9 x^2 - 34 x^3 + 121 x^4 + 45 x^5 + 3 x^6)/((1 - 2 x) (1 - x)^6), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 07 2014 *)
LinearRecurrence[{8, -27, 50, -55, 36, -13, 2}, {1, 1, -28, -235, -1008, -3093, -7712}, 30] (* Harvey P. Dale, May 14 2016 *)
PROG
(Magma) [2^n-n^5: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
(Magma) I:=[1, 1, -28, -235, -1008, -3093, -7712]; [n le 7 select I[n] else 8*Self(n-1)-27*Self(n-2)+50*Self(n-3)-55*Self(n-4)+36*Self(n-5)-13*Self(n-6)+2*Self(n-7): n in [1..35]]; // Vincenzo Librandi, Oct 07 2014
CROSSREFS
Cf. sequences of the form k^n-n^5: this sequence (k=2), A024028 (k=3), A024041 (k=4), A024054 (k=5), A024067 (k=6), A024080 (k=7), A024093 (k=8), A024106 (k=9), A024119 (k=10), A024132 (k=11), A024145 (k=12).
KEYWORD
sign,easy
AUTHOR
STATUS
approved

Search completed in 0.006 seconds