[go: up one dir, main page]

login
Search: a010903 -id:a010903
     Sort: relevance | references | number | modified | created      Format: long | short | data
Pisot sequence T(3,13), a(n) = floor( a(n-1)^2/a(n-2) ).
+10
4
3, 13, 56, 241, 1037, 4462, 19199, 82609, 355448, 1529413, 6580721, 28315366, 121834667, 524227237, 2255632184, 9705479209, 41760499493, 179686059838, 773148800711, 3326685824041, 14313982718072
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Empirical G.f.: (3-2*x)/(1-5*x+3*x^2). - Colin Barker, Feb 21 2012
Empirical: a(n) = 5*a(n-1)-3*a(n-2) with n>1, a(0)=3 and a(1)=13. - Vincenzo Librandi, Apr 17 2012
The empirical g.f. and recurrence above hold for n<=6000. - Bruno Berselli, Sep 03 2013
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016
MATHEMATICA
RecurrenceTable[{a[0] == 3, a[1] == 13, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 25}] (* Bruno Berselli, Sep 03 2013 *)
PROG
(Magma) I:=[3, 13]; [n le 2 select I[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..25]]; // Bruno Berselli, Sep 03 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Expansion of (1-x)^2/(1-5*x+3*x^2).
+10
2
1, 3, 13, 56, 241, 1037, 4462, 19199, 82609, 355448, 1529413, 6580721, 28315366, 121834667, 524227237, 2255632184, 9705479209, 41760499493, 179686059838, 773148800711, 3326685824041, 14313982718072, 61589856118237, 265007332436969, 1140267093830134
OFFSET
0,2
COMMENTS
a(n) is the number of generalized compositions of n when there are i+2 different types of i, (i=1,2,...). [Milan Janjic, Sep 24 2010]
LINKS
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
FORMULA
a(n+2) = 5a(n+1) - 3a(n) (n >= 1); a(0) = 1, a(1) = 3, a(2) = 13.
MATHEMATICA
CoefficientList[Series[(1-x)^2/(1-5x+3x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{5, -3}, {1, 3, 13}, 30] (* Harvey P. Dale, Jun 21 2021 *)
PROG
(PARI) a(n)=polcoeff((1-x)^2/(1-5*x+3*x^2)+x*O(x^n), n)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 13 2004
STATUS
approved

Search completed in 0.005 seconds