[go: up one dir, main page]

login
Search: a010048 -id:a010048
     Sort: relevance | references | number | modified | created      Format: long | short | data
Fibonomial coefficients: column 5 of A010048.
(Formerly M4568 N1945)
+20
8
1, 8, 104, 1092, 12376, 136136, 1514513, 16776144, 186135312, 2063912136, 22890661872, 253854868176, 2815321003313, 31222272414424, 346260798314872, 3840089017377228, 42587248616222024, 472299787252290712, 5237885063192296801, 58089034826620525728
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 17.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = A010048(5+n, 5) (or fibonomial(5+n, 5)).
G.f.: 1/(1-8*x-40*x^2+60*x^3+40*x^4-8*x^5-x^6) = 1/((1-x-x^2)*(1+4*x-x^2)*(1-11*x-x^2)) (see Comments to A055870).
a(n) = 11*a(n-1) + a(n-2) + ((-1)^n)*fibonomial(n+3, 3), n >= 2; a(0)=1, a(1)=8; fibonomial(n+3, 3)= A001655(n).
a(n) = Fibonacci(n+3)*(Fibonacci(n+3)^4-1)/30. - Gary Detlefs, Apr 24 2012
a(n) = (A049666(n+3) + 2*(-1)^n*A001076(n+3) - 3*A000045(n+3))/150, n >= 0, with A049666(n) = F(5*n)/5, A001076(n) = F(3*n)/2 and A000045(n) = F(n). From the partial fraction decomposition of the o.g.f. and recurrences. - Wolfdieter Lang, Aug 23 2012
a(n) = a(-6-n) * (-1)^n for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(-a(n+1) - 3*a(n+2)) + a(n+1)*(-8*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
EXAMPLE
G.f. = 1 + 8*x + 104*x^2 + 1092*x^3 + 12376*x^4 + 136136*x^5 + 1514513*x^6 + ...
MAPLE
with(combinat) : a:=n-> 1/30*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3)*fibonacci(n+4): seq(a(n), n=1..19); # Zerinvary Lajos, Oct 07 2007
A001657:=-1/(z**2+11*z-1)/(z**2-4*z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
f[n_] := Times @@ Fibonacci[Range[n + 1, n + 5]]/30; t = Table[f[n], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
LinearRecurrence[{8, 40, -60, -40, 8, 1}, {1, 8, 104, 1092, 12376, 136136}, 20] (* Harvey P. Dale, Nov 30 2019 *)
PROG
(PARI) a(n)=(n->(n^5-n)/30)(fibonacci(n+3)) \\ Charles R Greathouse IV, Apr 24 2012
(PARI) b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
vector(20, n, b(n-1, 5)) \\ Joerg Arndt, May 08 2016
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Corrected and extended by Wolfdieter Lang, Jun 27 2000
STATUS
approved
Row sums of Fibonomial triangle A010048.
+20
7
1, 2, 3, 6, 14, 42, 158, 756, 4594, 35532, 349428, 4370436, 69532964, 1407280392, 36228710348, 1186337370456, 49415178236344, 2618246576596392, 176462813970065208, 15128228719573952976, 1649746715671916095304
OFFSET
0,2
LINKS
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
FORMULA
a(n) = Sum_{m=0..n} A010048(n, m), where A010048(n, m) = fibonomial(n, m).
From Vaclav Kotesovec, Apr 30 2015: (Start)
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/4), where
c = EllipticTheta[3,0,1/GoldenRatio] / QPochhammer[-1/GoldenRatio^2] = 2.082828701647012450835512317685120373906427048806222527375... if n is even,
c = EllipticTheta[2,0,1/GoldenRatio] / QPochhammer[-1/GoldenRatio^2] = 2.082828691334156222136965926255238646603356514964103252122... if n is odd.
Or c = Sum_{j} ((1+sqrt(5))/2)^(-(j+(1-(-1)^n)/4)^2) / A062073, where A062073 = 1.2267420107203532444176302... is the Fibonacci factorial constant.
(End)
MATHEMATICA
Table[Sum[Product[Fibonacci[j], {j, 1, n}] / Product[Fibonacci[j], {j, 1, k}] / Product[Fibonacci[j], {j, 1, n-k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 30 2015 *)
(* Or, since version 10 *) Table[Sum[Fibonorial[n]/Fibonorial[k]/Fibonorial[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 30 2015 *)
Round@Table[Sum[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {k, 0, n}], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
PROG
(Maxima) ffib(n):=prod(fib(k), k, 1, n);
fibonomial(n, k):=ffib(n)/(ffib(k)*ffib(n-k));
makelist(sum(fibonomial(n, k), k, 0, n), n, 0, 30); /* Emanuele Munarini, Apr 02 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 10 2000
STATUS
approved
Diagonal sums of Fibonomial triangle A010048.
+20
4
1, 1, 2, 2, 4, 6, 13, 27, 70, 191, 609, 2130, 8526, 38156, 194000, 1109673, 7176149, 52238676, 429004471, 3970438003, 41454181730, 488046132076, 6482590679282, 97134793638750, 1641654359781521, 31285014253070731, 672372121341768918, 16299021330860540657
OFFSET
0,3
COMMENTS
Cf. A000045 (Fibonacci) as diagonal sums of A007318 (Pascal's Triangle). For Fibonacci numbers, the ratio A000045(i+1)/A000045(i) approaches the golden ratio (1+sqrt(5))/2 as i increases. For this sequence, it appears that (a(i+5)/a(i+4))/(a(i+1)/a(i)) approaches the golden ratio. - Dale Gerdemann, Apr 23 2015
This sequence can be interpreted as counting colored, square-domino tilings of a 1xn board, where the number of colors available for a domino with k squares to the left is Fib(k+1) and the number of colors available for a square with k dominoes to the left is Fib(k-1). "Fib(n)" here is A000045 (Fibonacci), extended so that Fib(-1) = 1, Fib(0) = 0,... . As an example, let d be a domino, s be a square an consider the uncolored tilings of length 5: sssss, sssd, ssds, sdss, dsss, sdd, dsd, dds. Then, after each 's' or 'd', write the number of colors available: s1s1s1s1s1, s1s1s1d3, s1s1d2s0, s1d1s0s0, d1s0s0s0, s1d1d1, d1s0d1, d1d1s1. So the number of colorings for these tilings is: 1,3,0,0,0,1,0,1 and the total number of colored tilings is 6 (= a(5)). - Dale Gerdemann, Apr 30 2015
LINKS
FORMULA
a(n) = sum(fibonomial(k,n-k),k=ceiling(n/2)..n).
From Vaclav Kotesovec, Apr 29 2015: (Start)
a(n) ~ c * ((1+sqrt(5))/2)^(n^2/8), where
c = 1.472885929099569314607134281503815932269629515265... if mod(n,4)=0,
c = 1.472782295338429619549807628338486893461428897618... if mod(n,4)=1 or 3,
c = 1.472678661577289942545896597162143392952724631588... if mod(n,4)=2.
Or c = Sum_{j} ((1+sqrt(5))/2)^(-2*(j+(1-cos(Pi*n/2))/4)^2) / A062073, where A062073 = 1.2267420107203532444176302... is the Fibonacci factorial constant.
(End)
a(n) = Sum_{k=ceiling(n/2)..n} A003266(k) / (A003266(2*k-n) * A003266(n-k)). - Vaclav Kotesovec, Apr 30 2015
MATHEMATICA
Table[Sum[Product[Fibonacci[k-j+1]/Fibonacci[j], {j, 1, n-k}], {k, Ceiling[n/2], n}], {n, 0, 30}] (* Vaclav Kotesovec, Apr 29 2015 *)
(* Or, since version 10 *) Table[Sum[Fibonorial[k]/Fibonorial[2k-n]/Fibonorial[n-k], {k, Ceiling[n/2], n}], {n, 0, 30}] (* Vaclav Kotesovec, Apr 30 2015 *)
(* List of the multiplicative constants from an asymptotic formula: *) {N[EllipticTheta[3, 0, GoldenRatio^(-2)]/QPochhammer[-(GoldenRatio^2)^(-1)], 80], N[Sum[GoldenRatio^(-2*(j + 1/4)^2), {j, -Infinity, Infinity}]/QPochhammer[-(GoldenRatio^2)^(-1)], 80], N[EllipticTheta[2, 0, GoldenRatio^(-2)]/QPochhammer[-(GoldenRatio^2)^(-1)], 80]} (* Vaclav Kotesovec, Apr 30 2015 *)
PROG
(Maxima) ffib(n):=prod(fib(k), k, 1, n);
fibonomial(n, k):=ffib(n)/(ffib(k)*ffib(n-k));
makelist(sum(fibonomial(k, n-k), k, ceiling(n/2), n), n, 0, 30);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 02 2012
EXTENSIONS
a(14) corrected by Vaclav Kotesovec, Apr 29 2015
STATUS
approved
Triangle T read by rows: inverse of fibonomial triangle (A010048).
+20
1
1, -1, 1, 0, -1, 1, 1, 0, -2, 1, -1, 3, 0, -3, 1, -6, -5, 15, 0, -5, 1, 35, -48, -40, 60, 0, -8, 1, 181, 455, -624, -260, 260, 0, -13, 1, -6056, 3801, 9555, -6552, -1820, 1092, 0, -21, 1, -3741, -205904, 129234, 162435, -74256, -12376, 4641, 0, -34, 1
OFFSET
1,9
COMMENTS
Conjecture: all rows except the first add to zero.
FORMULA
Conjecture: T(n+k, n) = A010048(n+k-1, k)*T(k, 1), n>1.
a(n,k) = A010048(n,k) * (Sum[s=1..n-k;(-1)^s * Sum[k1+k2+..+ks=n-k,ki>=1; C(n-k; k1,k2,...,ks)] ]) where C(n; k1,k2,...,ks) is a multi-F-nomial coefficient. - Maciej Dziemianczuk, Dec 21 2008
EXAMPLE
1,
-1,1,
0,-1,1,
1,0,-2,1,
-1,3,0,-3,1,
-6,-5,15,0,-5,1,
35,-48,-40,60,0,-8,1,
181,455,-624,-260,260,0,-13,1,
-6056,3801,9555,-6552,-1820,1092,0,-21,1,
CROSSREFS
First column is in A103995.
KEYWORD
sign,tabl
AUTHOR
Ralf Stephan, Feb 24 2005
STATUS
approved
Triangle T(n, k) = A010048(n, k)*A010048(n, k-1)/Fibonacci(n), read by rows.
+20
1
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 15, 45, 15, 1, 1, 40, 300, 300, 40, 1, 1, 104, 2080, 5200, 2080, 104, 1, 1, 273, 14196, 94640, 94640, 14196, 273, 1, 1, 714, 97461, 1689324, 4504864, 1689324, 97461, 714, 1, 1, 1870, 667590, 30375345, 210602392, 210602392, 30375345, 667590, 1870, 1
OFFSET
1,5
COMMENTS
These numbers are called the FiboNarayana numbers by Garrett and Killpatrick. - Michel Marcus, Oct 23 2019
LINKS
Kristina Garrett and Kendra Killpatrick, A Recursion for the FiboNarayana and the Generalized Narayana Numbers, arXiv:1910.08855 [math.CO], 2019.
FORMULA
T(n, k) = A010048(n, k) * A010048(n, k-1) / Fibonacci(n) where A010048 are the Fibonomial coefficients. - Michel Marcus, Oct 23 2019
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 15, 45, 15, 1;
1, 40, 300, 300, 40, 1;
1, 104, 2080, 5200, 2080, 104, 1;
1, 273, 14196, 94640, 94640, 14196, 273, 1;
1, 714, 97461, 1689324, 4504864, 1689324, 97461, 714, 1;
1, 1870, 667590, 30375345, 210602392, 210602392, 30375345, 667590, 1870, 1;
MATHEMATICA
A010048[n_, k_]:= Product[Fibonacci[n-j+1]/Fibonacci[j], {j, k}];
T[n_, k_]:= A010048[n, k]*A010048[n, k-1]/Fibonacci[n];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, May 08 2021 *)
PROG
(PARI) fibonomial(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)); \\ A010048
T(n, k) = fibonomial(n, k)*fibonomial(n, k-1)/fibonacci(n);
matrix(10, 10, n, k, T(n, k)) \\ to see the triangle \\ Michel Marcus, Oct 23 2019
(Sage)
@CachedFunction
def A010048(n, q): return product( fibonacci(n-j+1)/fibonacci(j) for j in (1..k) )
def T(n, k, q): return A010048(n, k)*A010048(n, k-1)/fibonacci(n)
flatten([[T(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 08 2021
CROSSREFS
Cf. A010048 (Fibonomial coefficients), A001263 (Narayana numbers).
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 01 2010
EXTENSIONS
Edited by Michel Marcus and Joerg Arndt, Oct 23 2019
STATUS
approved
Row square-sums of Fibonomial triangle A010048.
+20
1
1, 2, 3, 10, 56, 502, 6930, 157172, 5847270, 350430420, 33789991248, 5280020814732, 1338210835193414, 548265785425359340, 363248986031094300018, 389399454403643525265020, 675824289510077938157099920
OFFSET
0,2
FORMULA
a(n) = sum(fibonomial(n,k)^2,k=0..n).
MATHEMATICA
FiboFactorial[n_] := Product[Fibonacci[k], {k, 1, n}]
Fibonomial[n_, k_] :=
If[k > n, 0, FiboFactorial[n]/(FiboFactorial[k] FiboFactorial[n - k])
]
Table[Sum[Fibonomial[n, k]^2, {k, 0, n}], {n, 0, 100}]
(* Emanuele Munarini, Feb 18 2016 *)
PROG
(Maxima) ffib(n):=prod(fib(k), k, 1, n);
fibonomial(n, k):=ffib(n)/(ffib(k)*ffib(n-k));
makelist(sum(fibonomial(n, k)^2, k, 0, n), n, 0, 30);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Apr 02 2012
STATUS
approved
Golden rectangle numbers: F(n)*F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
(Formerly M1606 N0628)
+10
122
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719
OFFSET
0,3
COMMENTS
a(n)/A007598(n) ~= golden ratio, especially for larger n. - Robert Happelberg (roberthappelberg(AT)yahoo.com), Jul 25 2005
Let phi be the golden ratio (cf. A001622). Then 1/phi = phi - 1 = Sum_{n>=1} (-1)^(n-1)/a(n), an alternating infinite series consisting solely of unit fractions. - Franz Vrabec, Sep 14 2005
a(n+2) is the Hankel transform of A005807 aerated. - Paul Barry, Nov 04 2008
A more exact name would be: Golden convergents to rectangle numbers. These rectangles are not actually golden (ratio of sides is not phi) but are golden convergents (sides are numerator and denominator of convergents in the continued fraction expansion of phi, whence ratio of sides converges to phi). - Daniel Forgues, Nov 29 2009
The Kn4 sums (see A180662 for definition) of the "Races with Ties" triangle A035317 lead to this sequence. - Johannes W. Meijer, Jul 20 2011
Numbers m such that m(5m+2)+1 or m(5m-2)+1 is a square. - Bruno Berselli, Oct 22 2012
In pairs, these numbers are important in finding binomial coefficients that appear in at least six places in Pascal's triangle. For instance, the pair (m,n) = (40, 104) finds the numbers binomial(n-1,m) = binomial(n,m-1). Two additional numbers are found on the other side of the triangle. The final two numbers appear in row binomial(n-1,m). See A003015. - T. D. Noe, Mar 13 2013
For n>1, a(n) is one-half the area of the trapezoid created by the four points (F(n),L(n)), (L(n),F(n)), (F(n+1), L(n+1)), (L(n+1), F(n+1)) where F(n) = A000045(n) and L(n) = A000032(n). - J. M. Bergot, May 14 2014
[Note on how to calculate: take the two points (a,b) and (c,d) with a<b, c<d and a<d then subtract a from each: a-a=0, b-a=B, c-a=C, and d-a=D. The area is (D-(C-B)^2)/2.]
a(n) = A067962(n-1) / A067962(n-2), n > 1. - Reinhard Zumkeller, Sep 24 2015
Can be obtained (up to signs) by setting x = F(n)/F(n+1) in g.f. for Fibonacci numbers - see Pongsriiam. - N. J. A. Sloane, Mar 23 2017
REFERENCES
R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., 58:2 (2020), 140-142.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 9.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 17.
Ömer Egecioglu, Elif Saygi, and Zülfükar Saygi, The Mostar index of Fibonacci and Lucas cubes, arXiv:2101.04740 [math.CO], 2021. Mentions this sequence.
Shalosh B. Ekhad and Doron Zeilberger, Automatic Counting of Tilings of Skinny Plane Regions, arXiv preprint arXiv:1206.4864 [math.CO], 2012.
S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
Dale Gerdemann, Golden Ratio Base Digit Patterns for Columns of the Fibonomial Triangle, "Another interesting pattern is for Golden Rectangle Numbers A001654. I made a short video illustrating this pattern, along with other columns of the Fibonomial Triangle A010048".
Jonny Griffiths and Martin Griffiths, Fibonacci-related sequences via iterated QRT maps, Fib. Q., 51 (2013), 218-227.
James P. Jones and Péter Kiss, Representation of integers as terms of a linear recurrence with maximal index, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae, 25. (1998) pp. 21-37. See Lemma 4.1 p. 34.
C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Prapanpong Pongsriiam, Integral Values of the Generating Functions of Fibonacci and Lucas Numbers, College Math. J., 48 (No. 2 2017), pp 97ff.
M. Renault, Dissertation
FORMULA
a(n) = A010048(n+1, 2) = Fibonomial(n+1, 2).
a(n) = A006498(2*n-1).
a(n) = a(n - 1) + A007598(n) = a(n - 1) + A000045(n)^2 = Sum_{j <= n} j*Fibonacci(j)^2. - Henry Bottomley, Feb 09 2001
For n > 0, 1 - 1/a(n+1) = Sum_{k=1..n} 1/(F(k)*F(k+2)) where F(k) is the k-th Fibonacci number. - Benoit Cloitre, Aug 31 2002.
G.f.: x/(1-2*x-2*x^2+x^3) = x/((1+x)*(1-3*x+x^2)). (Simon Plouffe in his 1992 dissertation; see Comments to A055870),
a(n) = 3*a(n-1) - a(n-2) - (-1)^n = -a(-1-n).
Let M = the 3 X 3 matrix [1 2 1 / 1 1 0 / 1 0 0]; then a(n) = the center term in M^n *[1 0 0]. E.g., a(5) = 40 since M^5 * [1 0 0] = [64 40 25]. - Gary W. Adamson, Oct 10 2004
a(n) = Sum{k=0..n} Fibonacci(k)^2. The proof is easy. Start from a square (1*1). On the right side, draw another square (1*1). On the above side draw a square ((1+1)*(1+1)). On the left side, draw a square ((1+2)*(1+2)) and so on. You get a rectangle (F(n)*F(1+n)) which contains all the squares of side F(1), F(2), ..., F(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 19 2007
With phi = (1+sqrt(5))/2, a(n) = round((phi^(2*n+1))/5) = floor((1/2) + (phi^(2*n+1))/5), n >= 0. - Daniel Forgues, Nov 29 2009
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3), a(1)=1, a(2)=2, a(3)=6. - Sture Sjöstedt, Feb 06 2010
a(n) = (A002878(n) - (-1)^n)/5. - R. J. Mathar, Jul 22 2010
a(n) = 1/|F(n+1)/F(n) - F(n)/F(n-1)| where F(n) = Fibonacci numbers A000045. b(n) = F(n+1)/F(n) - F(n)/F(n-1): 1/1, -1/2, 1/6, -1/15, 1/40, -1/104, ...; c(n) = 1/b(n) = a(n)*(-1)^(n+1): 1, -2, 6, -15, 40, -104, ... (n=1,2,...). - Thomas Ordowski, Nov 04 2010
a(n) = (Fibonacci(n+2)^2 - Fibonacci(n-1)^2)/4. - Gary Detlefs, Dec 03 2010
Let d(n) = n mod 2, a(0)=0 and a(1)=1. For n > 1, a(n) = d(n) + 2*a(n-1) + Sum_{k=0..n-2} a(k). - L. Edson Jeffery, Mar 20 2011
From Tim Monahan, Jul 11 2011: (Start)
a(n+1) = ((2+sqrt(5))*((3+sqrt(5))/2)^n+(2-sqrt(5))*((3-sqrt(5))/2)^n+(-1)^n)/5.
a(n) = ((1+sqrt(5))*((3+sqrt(5))/2)^n+(1-sqrt(5))*((3-sqrt(5))/2)^n-2*(-1)^n)/10. (End)
From Wolfdieter Lang, Jul 21 2012: (Start)
a(n) = (2*A059840(n+2) - A027941(n))/3, n >= 0, with A059840(n+2) = Sum_{k=0..n} F(k)*F(k+2) and A027941(n) = A001519(n+1) - 1, n >= 0, where A001519(n+1) = F(2*n+1). (End)
a(n) = (-1)^n * Sum_{k=0..n} (-1)^k*F(2*k), n >= 0. - Wolfdieter Lang, Aug 11 2012
a(-1-n) = -a(n) for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
a(n) = (L(2*n+1) - (-1)^n)/5 with L(k) = A000032(k). - J. M. Bergot, Apr 15 2016
E.g.f.: ((3 + sqrt(5))*exp((5+sqrt(5))*x/2) - 2*exp((2*x)/(3+sqrt(5))+x) - 1 - sqrt(5))*exp(-x)/(5*(1 + sqrt(5))). - Ilya Gutkovskiy, Apr 15 2016
From Klaus Purath, Apr 24 2019: (Start)
a(n) = A061646(n) - Fibonacci(n-1)^2.
a(n) = (A061646(n+1) - A061646(n))/2. (End)
a(n) = A226205(n+1) + (-1)^(n+1). - Flávio V. Fernandes, Apr 23 2020
Sum_{n>=1} 1/a(n) = A290565. - Amiram Eldar, Oct 06 2020
EXAMPLE
G.f. = x + 2*x^2 + 6*x^3 + 15*x^4 + 40*x^5 + 104*x^6 + 273*x^7 + 714*x^8 + ...
MAPLE
with(combinat): A001654:=n->fibonacci(n)*fibonacci(n+1):
seq(A001654(n), n=0..28); # Zerinvary Lajos, Oct 07 2007
MATHEMATICA
LinearRecurrence[{2, 2, -1}, {0, 1, 2}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
Times@@@Partition[Fibonacci[Range[0, 30]], 2, 1] (* Harvey P. Dale, Aug 18 2011 *)
Accumulate[Fibonacci[Range[0, 30]]^2] (* Paolo Xausa, May 31 2024 *)
PROG
(PARI) A001654(n)=fibonacci(n)*fibonacci(n+1);
(PARI) b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
vector(30, n, b(n-1, 2)) \\ Joerg Arndt, May 08 2016
(Haskell)
a001654 n = a001654_list !! n
a001654_list = zipWith (*) (tail a000045_list) a000045_list
-- Reinhard Zumkeller, Jun 08 2013
(Python)
from sympy import fibonacci as F
def a(n): return F(n)*F(n + 1)
[a(n) for n in range(101)] # Indranil Ghosh, Aug 03 2017
(Python)
from math import prod
from gmpy2 import fib2
def A001654(n): return prod(fib2(n+1)) # Chai Wah Wu, May 19 2022
(Magma) I:=[0, 1, 2]; [n le 3 select I[n] else 2*Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 17 2018
CROSSREFS
Bisection of A006498, A070550, A080239.
First differences of A064831.
Partial sums of A007598.
KEYWORD
nonn,easy
EXTENSIONS
Extended by Wolfdieter Lang, Jun 27 2000
STATUS
approved
Signed Fibonomial triangle.
+10
27
1, 1, -1, 1, -1, -1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -5, -15, 15, 5, -1, 1, -8, -40, 60, 40, -8, -1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -34, -714, 4641, 12376, -12376, -4641, 714, 34, -1, 1, -55, -1870, 19635, 85085, -136136, -85085, 19635, 1870, -55, -1
OFFSET
0,8
COMMENTS
Row n+1 (n >= 1) of the signed triangle lists the coefficients of the recursion relation for the n-th power of Fibonacci numbers A000045: Sum_{m=0..n+1} T(n+1,m)*(Fibonacci(k-m))^n = 0, k >= n+1; inputs: (Fibonacci(k))^n, k=0..n.
The inverse of the row polynomial p(n,x) := Sum_{m=0..n} T(n,m)*x^m is the g.f. for the column m=n-1 of the Fibonomial triangle A010048.
The row polynomials p(n,x) factorize according to p(n,x) = G(n-1)*p(n-2,-x), with inputs p(0,x)= 1, p(1,x)= 1-x and G(n):= 1 - A000032(n)*x + (-1)^n*x^2. (Derived from Riordan's result and Knuth's exercise).
The row polynomials are the characteristic polynomials of product of the binomial matrix binomial(i,j) and the exchange matrix J_n (matrix with 1's on the antidiagonal, 0 elsewhere). - Paul Barry, Oct 05 2004
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, pp. 84-5 and 492.
LINKS
Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
A. T. Benjamin, S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
E. Kilic, The generalized Fibonomial matrix, Eur. J. Combinat. 31 (1) (2010) 193-209.
Ron Knott, The Fibonomials
Ewa Krot, An introduction to finite fibonomial calculus, Centr. Eur. J. Math. 2 (5) (2004) 754.
A. K. Kwasniewski, Fibonomial cumulative connection constants, arXiv:math/0406006 [math.CO], 2004-2009.
Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
Phakhinkon Phunphayap, Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
J. Seibert, P. Trojovsky, On some identities for the Fibonomial coefficients, Math. Slov. 55 (2005) 9-19.
P. Trojovsky, On some identities for the Fibonomial coefficients..., Discr. Appl. Math. 155 (15) (2007) 2017
FORMULA
T(n, m) = (-1)^floor((m+1)/2)*A010048(n, m), where A010048(n, m) := fibonomial(n, m).
G.f. for column m: (-1)^floor((m+1)/2)*x^m/p(m+1, x) with the row polynomial of the (signed) triangle: p(n, x) := Sum_{m=0..n} T(n, m)*x^m.
EXAMPLE
Row polynomial for n=4: p(4,x) = 1-3*x-6*x^2+3*x^3+x^4 = (1+x-x^2)*(1-4*x-x^2). 1/p(4,x) is G.f. for A010048(n+3,3), n >= 0: {1,3,15,60,...} = A001655(n).
n=3: 1*(Fibonacci(k))^3 - 3*(Fibonacci(k-1))^3 - 6*(Fibonacci(k-2))^3 + 3*(Fibonacci(k-3))^3 + 1*(Fibonacci(k-4))^3 = 0, k >= 4; inputs: (Fibonacci(k))^3, k=0..3.
The triangle begins:
n\m 0 1 2 3 4 5 6 7 8 9
0 1
1 1 -1
2 1 -1 -1
3 1 -2 -2 1
4 1 -3 -6 3 1
5 1 -5 -15 15 5 -1
6 1 -8 -40 60 40 -8 -1
7 1 -13 -104 260 260 -104 -13 1
8 1 -21 -273 1092 1820 -1092 -273 21 1
9 1 -34 -714 4641 12376 -12376 -4641 714 34 -1
... [Wolfdieter Lang, Aug 06 2012; a(7,1) corrected, Oct 10 2012]
MAPLE
A055870 := proc(n, k)
(-1)^floor((k+1)/2)*A010048(n, k) ;
end proc: # R. J. Mathar, Jun 14 2015
MATHEMATICA
T[n_, m_]:= {1, -1, -1, 1}[[Mod[m, 4] + 1]] * Product[ Fibonacci[n-j+1]/Fibonacci[j], {j, m}];
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Jean-François Alcover, Jul 05 2013 *)
PROG
(Magma)
Fibonomial:= func< n, k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >;
[(-1)^Floor((k+1)/2)*Fibonomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
(SageMath)
def fibonomial(n, k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1, k+1))
flatten([[(-1)^((k+1)//2)*fibonomial(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
CROSSREFS
Sums include: A055871 (signed row), A056569 (row).
Central column: A003268.
KEYWORD
easy,sign,tabl
AUTHOR
Wolfdieter Lang, Jul 10 2000
STATUS
approved
Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
+10
24
1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
OFFSET
0,2
COMMENTS
Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\ b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4,, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash.
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
L. Carlitz and R. Scoville, Generalized Eulerian numbers: combinatorial applications, J. für die reine und angewandte Mathematik, 265 (1974): 110-37. See Section 3.
Dale Gerdemann, A256890, Plot of t(m,n) mod k , YouTube, 2015.
Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018-2019.
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)
EXAMPLE
Array, t(n, k), begins as:
1, 2, 4, 8, 16, 32, 64, ...;
2, 12, 52, 196, 684, 2276, 7340, ...;
4, 52, 416, 2644, 14680, 74652, 357328, ...;
8, 196, 2644, 26440, 220280, 1623964, 10978444, ...;
16, 684, 14680, 220280, 2643360, 27227908, 251195000, ...;
32, 2276, 74652, 1623964, 27227908, 381190712, 4677894984, ...;
64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
1;
2, 2;
4, 12, 4;
8, 52, 52, 8;
16, 196, 416, 196, 16;
32, 684, 2644, 2644, 684, 32;
64, 2276, 14680, 26440, 14680, 2276, 64;
128, 7340, 74652, 220280, 220280, 74652, 7340, 128;
256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256;
MATHEMATICA
Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j, 0, k}], {n, 0, 9}, {k, 0, n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
PROG
(PARI) t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ Michel Marcus, Apr 14 2015
(Magma)
A256890:= func< n, k | (&+[(-1)^(k-j)*Binomial(j+3, j)*Binomial(n+4, k-j)*(j+2)^n: j in [0..k]]) >;
[A256890(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
(SageMath)
def A256890(n, k): return sum((-1)^(k-j)*Binomial(j+3, j)*Binomial(n+4, k-j)*(j+2)^n for j in range(k+1))
flatten([[A256890(n, k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022
KEYWORD
nonn,tabl,easy
AUTHOR
Dale Gerdemann, Apr 12 2015
STATUS
approved
Coefficient triangle of certain polynomials.
+10
18
1, 1, -1, 1, -2, -1, 1, -4, -4, 1, 1, -7, -16, 7, 1, 1, -12, -53, 53, 12, -1, 1, -20, -166, 318, 166, -20, -1, 1, -33, -492, 1784, 1784, -492, -33, 1, 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1, 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1
OFFSET
0,5
COMMENTS
G.f. for column m: see column sequences: A000012, A000071, A056589-91, for m=0..4.
The row polynomials p(n,x) := sum(a(n,m)*x^m) occur as numerators of the g.f. for the (n+1)-th power of Fibonacci numbers A000045. The corresponding denominator polynomials are the row polynomials q(n+2,x) = Sum_{m=0..n+2} A055870(n+2, m)*x^m (signed Fibonomial triangle).
The row polynomials p(n,x) and the companion denominator polynomials q(n,x) can be deduced from Riordan's recursion result.
The explicit formula is found from the recursion relation for powers of Fibonacci numbers (see Knuth's exercise with solution). - Roger L. Bagula, Apr 03 2010
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 84, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
LINKS
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
FORMULA
a(n, m)=0 if n<m; a(n, 0)=1; a(n, m) = F(m+1)^(n+1) + sum(sfibonomial(n+2, j)*(F(m+1-j)^(n+1)), j=1..m) m=1..n, with F(n)=A000045(n) (Fibonacci) and sfibonomial(n, m) := A055870(n, m).
From Roger L. Bagula, Apr 03 2010: (Start)
p(x,n) = Sum_{k>=0} (((1 + sqrt(5))^k - (1 - sqrt(5))^k)/(2^k*sqrt(5)))^n*x^k;
t(n,m) = Numerator_coefficients(p(x,n)/x)/2^(1 + floor(n/2));
out(n,m) = t(n,m)/t(n,1). (End)
T(n, k) = Sum_{j=0..k} Fibonacci(k+1-j)^(n+1) * A055870(n+2, j). - Tony Foster III, Aug 20 2018
Sum_{j=0..n-1} a(n-1, n-1-j)*A010048(k+j, n) = Fibonacci(k)^n. - Tony Foster III, Jul 24 2018
EXAMPLE
Row polynomial for n=4: p(4,x) = 1 - 7*x - 16*x^2 + 7*x^3 + x^4. x*p(4,x) is the numerator of the g.f. for A056572(n), n >= 0 (fifth power of Fibonacci numbers) {0,1,1,32,243,...}. The denominator polynomial is Sum_{m=0..6} A055870(6,m)*x^m (n=6 row polynomial of signed fibonomial triangle).
From Roger L. Bagula, Apr 03 2010: (Start)
1;
1, -1;
1, -2, -1;
1, -4, -4, 1;
1, -7, -16, 7, 1;
1, -12, -53, 53, 12, -1;
1, -20, -166, 318, 166, -20, -1;
1, -33, -492, 1784, 1784, -492, -33, 1;
1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1;
1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1; (End)
MAPLE
A056588 := proc(n, k)
if k = 0 then
1;
elif k >n then
0;
else
combinat[fibonacci](k+1)^(n+1)+add( A055870(n+2, j)*(combinat[fibonacci](k+1-j)^(n+1)), j=1..k) ;
end if;
end proc: # R. J. Mathar, Jun 14 2015
MATHEMATICA
p[x_, n_] = Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k*Sqrt[5]))^n*x^k, {k, 0, Infinity}];
a = Table[CoefficientList[FullSimplify[Numerator[p[ x, n]]/x], x]/2^(1 + Floor[n/2]), {n, 1, 10}];
Table[a[[n]]/a[[n]][[1]], {n, 1, 10}];
Flatten[%] (* Roger L. Bagula, Apr 03 2010 *)
PROG
(PARI) S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)));
T(n, k) = sum(j=0, k, fibonacci(k+1-j)^(n+1) * S(n+2, j));
tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print);
tabl(9); \\ Tony Foster III, Aug 20 2018
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Wolfdieter Lang, Jul 10 2000
STATUS
approved

Search completed in 0.027 seconds