[go: up one dir, main page]

login
Search: a010048 -id:a010048
     Sort: relevance | references | number | modified | created      Format: long | short | data
Fibonomial coefficients: column 5 of A010048.
(Formerly M4568 N1945)
+20
8
1, 8, 104, 1092, 12376, 136136, 1514513, 16776144, 186135312, 2063912136, 22890661872, 253854868176, 2815321003313, 31222272414424, 346260798314872, 3840089017377228, 42587248616222024, 472299787252290712, 5237885063192296801, 58089034826620525728
FORMULA
a(n) = A010048(5+n, 5) (or fibonomial(5+n, 5)).
CROSSREFS
Row sums of Fibonomial triangle A010048.
+20
7
1, 2, 3, 6, 14, 42, 158, 756, 4594, 35532, 349428, 4370436, 69532964, 1407280392, 36228710348, 1186337370456, 49415178236344, 2618246576596392, 176462813970065208, 15128228719573952976, 1649746715671916095304
FORMULA
a(n) = Sum_{m=0..n} A010048(n, m), where A010048(n, m) = fibonomial(n, m).
CROSSREFS
Diagonal sums of Fibonomial triangle A010048.
+20
4
1, 1, 2, 2, 4, 6, 13, 27, 70, 191, 609, 2130, 8526, 38156, 194000, 1109673, 7176149, 52238676, 429004471, 3970438003, 41454181730, 488046132076, 6482590679282, 97134793638750, 1641654359781521, 31285014253070731, 672372121341768918, 16299021330860540657
CROSSREFS
Triangle T read by rows: inverse of fibonomial triangle (A010048).
+20
1
1, -1, 1, 0, -1, 1, 1, 0, -2, 1, -1, 3, 0, -3, 1, -6, -5, 15, 0, -5, 1, 35, -48, -40, 60, 0, -8, 1, 181, 455, -624, -260, 260, 0, -13, 1, -6056, 3801, 9555, -6552, -1820, 1092, 0, -21, 1, -3741, -205904, 129234, 162435, -74256, -12376, 4641, 0, -34, 1
FORMULA
Conjecture: T(n+k, n) = A010048(n+k-1, k)*T(k, 1), n>1.
a(n,k) = A010048(n,k) * (Sum[s=1..n-k;(-1)^s * Sum[k1+k2+..+ks=n-k,ki>=1; C(n-k; k1,k2,...,ks)] ]) where C(n; k1,k2,...,ks) is a multi-F-nomial coefficient. - Maciej Dziemianczuk, Dec 21 2008
Triangle T(n, k) = A010048(n, k)*A010048(n, k-1)/Fibonacci(n), read by rows.
+20
1
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 15, 45, 15, 1, 1, 40, 300, 300, 40, 1, 1, 104, 2080, 5200, 2080, 104, 1, 1, 273, 14196, 94640, 94640, 14196, 273, 1, 1, 714, 97461, 1689324, 4504864, 1689324, 97461, 714, 1, 1, 1870, 667590, 30375345, 210602392, 210602392, 30375345, 667590, 1870, 1
FORMULA
T(n, k) = A010048(n, k) * A010048(n, k-1) / Fibonacci(n) where A010048 are the Fibonomial coefficients. - Michel Marcus, Oct 23 2019
MATHEMATICA
A010048[n_, k_]:= Product[Fibonacci[n-j+1]/Fibonacci[j], {j, k}];
T[n_, k_]:= A010048[n, k]*A010048[n, k-1]/Fibonacci[n];
PROG
(PARI) fibonomial(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)); \\ A010048
def A010048(n, q): return product( fibonacci(n-j+1)/fibonacci(j) for j in (1..k) )
def T(n, k, q): return A010048(n, k)*A010048(n, k-1)/fibonacci(n)
CROSSREFS
Cf. A010048 (Fibonomial coefficients), A001263 (Narayana numbers).
Row square-sums of Fibonomial triangle A010048.
+20
1
1, 2, 3, 10, 56, 502, 6930, 157172, 5847270, 350430420, 33789991248, 5280020814732, 1338210835193414, 548265785425359340, 363248986031094300018, 389399454403643525265020, 675824289510077938157099920
CROSSREFS
Golden rectangle numbers: F(n)*F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
(Formerly M1606 N0628)
+10
122
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719
LINKS
Dale Gerdemann, Golden Ratio Base Digit Patterns for Columns of the Fibonomial Triangle, "Another interesting pattern is for Golden Rectangle Numbers A001654. I made a short video illustrating this pattern, along with other columns of the Fibonomial Triangle A010048".
FORMULA
a(n) = A010048(n+1, 2) = Fibonomial(n+1, 2).
Signed Fibonomial triangle.
+10
27
1, 1, -1, 1, -1, -1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -5, -15, 15, 5, -1, 1, -8, -40, 60, 40, -8, -1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -34, -714, 4641, 12376, -12376, -4641, 714, 34, -1, 1, -55, -1870, 19635, 85085, -136136, -85085, 19635, 1870, -55, -1
COMMENTS
The inverse of the row polynomial p(n,x) := Sum_{m=0..n} T(n,m)*x^m is the g.f. for the column m=n-1 of the Fibonomial triangle A010048.
FORMULA
T(n, m) = (-1)^floor((m+1)/2)*A010048(n, m), where A010048(n, m) := fibonomial(n, m).
EXAMPLE
Row polynomial for n=4: p(4,x) = 1-3*x-6*x^2+3*x^3+x^4 = (1+x-x^2)*(1-4*x-x^2). 1/p(4,x) is G.f. for A010048(n+3,3), n >= 0: {1,3,15,60,...} = A001655(n).
MAPLE
(-1)^floor((k+1)/2)*A010048(n, k) ;
Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
+10
24
1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
COMMENTS
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
Coefficient triangle of certain polynomials.
+10
18
1, 1, -1, 1, -2, -1, 1, -4, -4, 1, 1, -7, -16, 7, 1, 1, -12, -53, 53, 12, -1, 1, -20, -166, 318, 166, -20, -1, 1, -33, -492, 1784, 1784, -492, -33, 1, 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1, 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1
FORMULA
Sum_{j=0..n-1} a(n-1, n-1-j)*A010048(k+j, n) = Fibonacci(k)^n. - Tony Foster III, Jul 24 2018

Search completed in 0.030 seconds