Displaying 1-10 of 47 results found.
Fibonomial coefficients: column 5 of A010048.
(Formerly M4568 N1945)
+20
8
1, 8, 104, 1092, 12376, 136136, 1514513, 16776144, 186135312, 2063912136, 22890661872, 253854868176, 2815321003313, 31222272414424, 346260798314872, 3840089017377228, 42587248616222024, 472299787252290712, 5237885063192296801, 58089034826620525728
FORMULA
a(n) = A010048(5+n, 5) (or fibonomial(5+n, 5)).
Row sums of Fibonomial triangle A010048.
+20
7
1, 2, 3, 6, 14, 42, 158, 756, 4594, 35532, 349428, 4370436, 69532964, 1407280392, 36228710348, 1186337370456, 49415178236344, 2618246576596392, 176462813970065208, 15128228719573952976, 1649746715671916095304
FORMULA
a(n) = Sum_{m=0..n} A010048(n, m), where A010048(n, m) = fibonomial(n, m).
Diagonal sums of Fibonomial triangle A010048.
+20
4
1, 1, 2, 2, 4, 6, 13, 27, 70, 191, 609, 2130, 8526, 38156, 194000, 1109673, 7176149, 52238676, 429004471, 3970438003, 41454181730, 488046132076, 6482590679282, 97134793638750, 1641654359781521, 31285014253070731, 672372121341768918, 16299021330860540657
Triangle T read by rows: inverse of fibonomial triangle ( A010048).
+20
1
1, -1, 1, 0, -1, 1, 1, 0, -2, 1, -1, 3, 0, -3, 1, -6, -5, 15, 0, -5, 1, 35, -48, -40, 60, 0, -8, 1, 181, 455, -624, -260, 260, 0, -13, 1, -6056, 3801, 9555, -6552, -1820, 1092, 0, -21, 1, -3741, -205904, 129234, 162435, -74256, -12376, 4641, 0, -34, 1
FORMULA
Conjecture: T(n+k, n) = A010048(n+k-1, k)*T(k, 1), n>1.
a(n,k) = A010048(n,k) * (Sum[s=1..n-k;(-1)^s * Sum[k1+k2+..+ks=n-k,ki>=1; C(n-k; k1,k2,...,ks)] ]) where C(n; k1,k2,...,ks) is a multi-F-nomial coefficient. - Maciej Dziemianczuk, Dec 21 2008
Triangle T(n, k) = A010048(n, k)* A010048(n, k-1)/Fibonacci(n), read by rows.
+20
1
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 15, 45, 15, 1, 1, 40, 300, 300, 40, 1, 1, 104, 2080, 5200, 2080, 104, 1, 1, 273, 14196, 94640, 94640, 14196, 273, 1, 1, 714, 97461, 1689324, 4504864, 1689324, 97461, 714, 1, 1, 1870, 667590, 30375345, 210602392, 210602392, 30375345, 667590, 1870, 1
MATHEMATICA
A010048[n_, k_]:= Product[Fibonacci[n-j+1]/Fibonacci[j], {j, k}];
PROG
(PARI) fibonomial(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)); \\ A010048
def A010048(n, q): return product( fibonacci(n-j+1)/fibonacci(j) for j in (1..k) )
Row square-sums of Fibonomial triangle A010048.
+20
1
1, 2, 3, 10, 56, 502, 6930, 157172, 5847270, 350430420, 33789991248, 5280020814732, 1338210835193414, 548265785425359340, 363248986031094300018, 389399454403643525265020, 675824289510077938157099920
Golden rectangle numbers: F(n)*F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
(Formerly M1606 N0628)
+10
122
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719
FORMULA
a(n) = A010048(n+1, 2) = Fibonomial(n+1, 2).
Signed Fibonomial triangle.
+10
27
1, 1, -1, 1, -1, -1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -5, -15, 15, 5, -1, 1, -8, -40, 60, 40, -8, -1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -34, -714, 4641, 12376, -12376, -4641, 714, 34, -1, 1, -55, -1870, 19635, 85085, -136136, -85085, 19635, 1870, -55, -1
COMMENTS
The inverse of the row polynomial p(n,x) := Sum_{m=0..n} T(n,m)*x^m is the g.f. for the column m=n-1 of the Fibonomial triangle A010048.
FORMULA
T(n, m) = (-1)^floor((m+1)/2)* A010048(n, m), where A010048(n, m) := fibonomial(n, m).
EXAMPLE
Row polynomial for n=4: p(4,x) = 1-3*x-6*x^2+3*x^3+x^4 = (1+x-x^2)*(1-4*x-x^2). 1/p(4,x) is G.f. for A010048(n+3,3), n >= 0: {1,3,15,60,...} = A001655(n).
MAPLE
(-1)^floor((k+1)/2)* A010048(n, k) ;
CROSSREFS
Cf. A000032, A000045, A001654, A001655, A001656, A001657, A001658, A010048, A051159, A056565, A056566, A056567.
Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
+10
24
1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
COMMENTS
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
Coefficient triangle of certain polynomials.
+10
18
1, 1, -1, 1, -2, -1, 1, -4, -4, 1, 1, -7, -16, 7, 1, 1, -12, -53, 53, 12, -1, 1, -20, -166, 318, 166, -20, -1, 1, -33, -492, 1784, 1784, -492, -33, 1, 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1, 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1
Search completed in 0.030 seconds
|