[go: up one dir, main page]

login
Search: a017377 -id:a017377
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes of form 10*k + 9.
+10
50
19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359, 379, 389, 409, 419, 439, 449, 479, 499, 509, 569, 599, 619, 659, 709, 719, 739, 769, 809, 829, 839, 859, 919, 929, 1009, 1019, 1039, 1049, 1069, 1109, 1129, 1229, 1249, 1259, 1279, 1289
OFFSET
1,1
COMMENTS
Also primes of form 5*k + 4.
5 is quadratic residue of primes of form 10*k-1. - Vincenzo Librandi, Jun 25 2014
Also, primes p such that 5 divides sigma(p), cf. A274397. - M. F. Hasler, Jul 10 2016
Conjecture: Primes p such that ((x+1)^5-1)/x has 2 distinct irreducible factors of degree 2 over GF(p). - Federico Provvedi, Apr 01 2018
The digital root of a(n) is 1, 2, 4, 5, 7 or 8. - Muniru A Asiru, Apr 28 2018
From Jianing Song, Sep 13 2022: (Start)
Primes p such that the ideal (p) factors into two prime ideals in Z[zeta_5], where zeta_5 = exp(2*Pi*i/5). Since Z[zeta_5] is a PID, this is equivalent to saying that this sequence lists primes p that are the product of two non-associate prime elements Z[zeta_5]. In particular, the factorization of p == 4 (mod 5) in Z[zeta_5] coincides with the factorization in Z[(1+sqrt(5))/2] (e.g., 19 = (8+3*sqrt(5))*(8-3*sqrt(5)) is the factorization of 19 in both Z[(1+sqrt(5))/2] and Z[zeta_5]).
Also primes p such that x^4 + x^3 + x^2 + x + 1 factors into two irreducible quadratic polynomials over GF(p) (cf. A327753). (End)
LINKS
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
Erika Klarreich, Mathematicians Discover Prime Conspiracy, Quanta Magazine, 2016.
R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes, arXiv:1603.03720 [math.NT], 2016.
FORMULA
a(n) = 10*A102700(n) + 9.
Union of A132234 and A132236. - Ray Chandler, Apr 07 2009
Intersection of A000040 and A017377. - Iain Fox, Dec 30 2017
MAPLE
select(isprime, [seq(10*n+9, n=1..500)]); # Muniru A Asiru, Apr 27 2018
MATHEMATICA
Select[Prime@Range[210], Mod[ #, 10] == 9 &] (* Ray Chandler, Nov 07 2006 *)
Select[Range[9, 1300, 10], PrimeQ] (* Harvey P. Dale, Jun 01 2012 *)
Prime@Flatten@Position[Length@FactorList[((1+d)^5-1)/d, Modulus->#]&/@Prime@Range@200, 3] (* Federico Provvedi, Apr 04 2018 *)
PROG
(PARI) select(n->n%10==9, primes(100)) \\ Charles R Greathouse IV, Apr 29 2015
(PARI) for(n=1, 1e3, if(isprime(p=10*n+9), print1(p, ", "))); \\ Altug Alkan, Apr 19 2018
(GAP) Filtered(List([1..500], n->10*n+9), IsPrime); # Muniru A Asiru, Apr 27 2018
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Extended by Ray Chandler, Nov 07 2006
STATUS
approved
a(n) = numerator of n/(n+20).
+10
19
0, 1, 1, 3, 1, 1, 3, 7, 2, 9, 1, 11, 3, 13, 7, 3, 4, 17, 9, 19, 1, 21, 11, 23, 6, 5, 13, 27, 7, 29, 3, 31, 8, 33, 17, 7, 9, 37, 19, 39, 2, 41, 21, 43, 11, 9, 23, 47, 12, 49, 5, 51, 13, 53, 27, 11, 14, 57, 29, 59, 3, 61, 31, 63, 16, 13, 33, 67, 17, 69, 7, 71, 18, 73, 37, 15, 19, 77, 39, 79
OFFSET
0,4
COMMENTS
Contains as subsequences A026741, A017281, A017305, A005408, A017353, and A017377. - Luce ETIENNE, Nov 04 2018
Multiplicative and also a strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
a(n) = lcm(20, n)/20. - Zerinvary Lajos, Jun 12 2009
a(n) = n/gcd(n, 20). - Andrew Howroyd, Jul 25 2018
From Luce ETIENNE, Nov 04 2018: (Start)
a(n) = 9*a(n-20) - 36*a(n-40) + 84*a(n-60) - 126*a(n-80) + 126*a(n-100) - 84*a(n-120) + 36*a(n-140) - 9*a(n-160) + a(n-180).
a(n) = (5*(119*m^9 - 4923*m^8 + 86250*m^7 - 832230*m^6 + 4807887*m^5 - 16882299*m^4 + 34770400*m^3 - 37855620m^2 + 16581744*m + 54432)*floor(n/10) + 72*m*(3*m^8 - 120*m^7 + 2030*m^6 - 18900*m^5 + 105329*m^4 - 356580*m^3 + 706220*m^2 - 733200*m + 300258) + ((19*m^9 - 855*m^8 + 15810*m^7 - 154350*m^6 + 849387*m^5 - 2597175*m^4 + 4037840*m^3 - 2600100*m^2 + 540144*m - 90720)*floor(n/10) - 72*m*(m^7 - 35*m^6 + 490*m^5 - 3500*m^4 + 13489*m^3 - 27335*m^2 + 26340*m - 9450))*(-1)^floor(n/10))/362880 where m = (n mod 10). (End)
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,20) is a quasi-polynomial in n since gcd(n,20) is a purely periodic sequence of period 20.
O.g.f.: F(x) - F(x^2) - F(x^4) - 4*F(x^5) + 4*F(x^10) + 4*F(x^20), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 20} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (1/2)*log(1/(1 - x^2)) + (2/4)*log(1/(1 - x^4)) + (4/5)*log(1/(1 - x^5)) + (4/10)*log(1/(1 - x^10)) + (8/20)*log(1/(1 - x^20)), where phi(n) denotes the Euler totient function A000010. (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0, e-2), a(5^e) = 5^max(0,e-1), and a(p^e) = p^e otherwise.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/4^s - 4/5^s + 4/10^s + 4/20^s).
Sum_{k=1..n} a(k) ~ (231/800) * n^2. (End)
MAPLE
seq(numer(n/(n+20)), n=0..80); # Muniru A Asiru, Feb 19 2019
MATHEMATICA
f[n_]:=Numerator[n/(n+20)]; Array[f, 100, 0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
PROG
(Sage) [lcm(20, n)/20 for n in range(0, 80)] # Zerinvary Lajos, Jun 12 2009
(Magma) [Numerator(n/(n+20)): n in [0..100]]; // Vincenzo Librandi, Mar 06 2018
(PARI) a(n) = numerator(n/(n+20)); \\ Michel Marcus, Mar 07 2018
(GAP) List([0..80], n->NumeratorRat(n/(n+20))); # Muniru A Asiru, Feb 19 2019
CROSSREFS
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106620 (k = 13 thru 19).
KEYWORD
nonn,easy,frac,mult
AUTHOR
N. J. A. Sloane, May 15 2005
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 25 2018
STATUS
approved
Decimal representation ends with either 2 or 9.
+10
15
2, 9, 12, 19, 22, 29, 32, 39, 42, 49, 52, 59, 62, 69, 72, 79, 82, 89, 92, 99, 102, 109, 112, 119, 122, 129, 132, 139, 142, 149, 152, 159, 162, 169, 172, 179, 182, 189, 192, 199, 202, 209, 212, 219, 222, 229, 232, 239, 242, 249, 252, 259, 262, 269, 272, 279, 282, 289, 292, 299, 302, 309, 312, 319, 322, 329, 332, 339
OFFSET
1,1
COMMENTS
Natural numbers not in A273664.
FORMULA
a(n) = 10*(((n-2)+A000035(n))/2) + 2 [when n is odd], or + 9 [when n is even].
For n >= 5, a(n) = 2*a(n-2) - a(n-4).
a(n) = A126760(A084967(n)).
a(n) = A249746((3*A249745(n))-1).
Other identities. For all n >= 1:
A084967(n) = 5*A007310(n) = A007310(a(n)).
G.f.: x*(x^2+7*x+2)/((x+1)*(x-1)^2).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((1+1/sqrt(5))/2)*phi^2*Pi/10 - log(phi)/(2*sqrt(5)) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
MATHEMATICA
Select[Range@ 340, MemberQ[{2, 9}, Mod[#, 10]] &] (* or *)
Table[{10 n + 2, 10 n + 9}, {n, 0, 33}] // Flatten (* or *)
CoefficientList[Series[(-5/(1 - x) + (11 - x)/(-1 + x)^2 - 2/(1 + x))/2, {x, 0, 67}], x] (* Michael De Vlieger, Aug 07 2016 *)
PROG
(Scheme)
(define (A273669 n) (+ (* 10 (/ (+ (- n 2) (if (odd? n) 1 0)) 2)) (if (odd? n) 2 9)))
CROSSREFS
Sequences A017293 and A017377 interleaved.
Cf. also A273664, A249824, A275716.
KEYWORD
nonn,base,easy
AUTHOR
Antti Karttunen, Aug 06 2016
STATUS
approved
a(n) = 10*binomial(n,2) + 9*n.
+10
14
0, 9, 28, 57, 96, 145, 204, 273, 352, 441, 540, 649, 768, 897, 1036, 1185, 1344, 1513, 1692, 1881, 2080, 2289, 2508, 2737, 2976, 3225, 3484, 3753, 4032, 4321, 4620, 4929, 5248, 5577, 5916, 6265, 6624, 6993, 7372, 7761, 8160, 8569, 8988, 9417, 9856, 10305, 10764
OFFSET
0,2
COMMENTS
Also, second 12-gonal (or dodecagonal) numbers. Identity for the numbers b(n)=n*(h*n+h-2)/2 (see Crossrefs): Sum_{i=0..n} (b(n)+i)^2 = (Sum_{i=n+1..2*n} (b(n)+i)^2) + h*(h-4)*A000217(n)^2 for n>0. - Bruno Berselli, Jan 15 2011
Sequence found by reading the line from 0, in the direction 0, 28, ..., and the line from 9, in the direction 9, 57, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 24 2012
Bisection of A195162. - Omar E. Pol, Aug 04 2012
LINKS
L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
FORMULA
From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: x*(9+x)/(1-x)^3.
a(n) = n*(5*n+4). (End)
a(n) = a(n-1) + 10*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 24 2009
a(n) = Sum_{i=0..n-1} A017377(i) for n>0. - Bruno Berselli, Jan 15 2011
a(n) = A131242(10n+8). - Philippe Deléham, Mar 27 2013
Sum_{n>=1} 1/a(n) = 5/16 + sqrt(1 + 2/sqrt(5))*Pi/8 - 5*log(5)/16 - sqrt(5)*log((1 + sqrt(5))/2)/8 = 0.2155517745488486003038... . - Vaclav Kotesovec, Apr 27 2016
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(9 + 5*x)*exp(x). (End)
a(n) = A003154(n+1) - A000290(n+1). - Leo Tavares, Mar 29 2022
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 9, 28}, 50] (* or *) Table[5*n^2 + 4*n, {n, 0, 50}] (* G. C. Greubel, Oct 29 2016 *)
Table[10 Binomial[n, 2]+9n, {n, 0, 60}] (* Harvey P. Dale, Jun 14 2023 *)
PROG
(PARI) a(n) = 10*binomial(n, 2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
(Magma) [n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
(Sage) [n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
(GAP) List([0..50], n-> n*(5*n+4)) # G. C. Greubel, Jul 04 2019
CROSSREFS
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, A062728, this sequence.
Cf. A195162.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 04 2008
STATUS
approved
Positive integers k that are the product of two integers ending with 3.
+10
11
9, 39, 69, 99, 129, 159, 169, 189, 219, 249, 279, 299, 309, 339, 369, 399, 429, 459, 489, 519, 529, 549, 559, 579, 609, 639, 669, 689, 699, 729, 759, 789, 819, 849, 879, 909, 939, 949, 969, 989, 999, 1029, 1059, 1079, 1089, 1119, 1149, 1179, 1209, 1219, 1239, 1269
OFFSET
1,1
COMMENTS
All the terms end with 9 (A017377).
LINKS
FORMULA
Limit_{n->oo} a(n)/a(n-1) = 1.
EXAMPLE
9 = 3*3, 39 = 3*13, 69 = 3*23, 99 = 3*33, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63, ...
MATHEMATICA
a={}; For[n=0, n<=250, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
PROG
(Python)
def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
print(aupto(1270)) # Michael S. Branicky, Aug 08 2021
CROSSREFS
Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346951, A346952, A346953.
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Aug 08 2021
STATUS
approved
Number of positive integers with n digits that are the product of two integers ending with 3.
+10
8
1, 3, 37, 398, 4303, 45765, 480740, 5005328, 51770770, 532790460, 5461696481, 55814395421, 568944166801, 5787517297675
OFFSET
1,2
COMMENTS
a(n) is the number of n-digit numbers in A346950.
FORMULA
a(n) < A052268(n).
Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.
MATHEMATICA
Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], lo<#<hi&], {n, 7}] (* Giorgos Kalogeropoulos, Aug 16 2021 *)
PROG
(Python)
def a(n):
lo, hi = 10**(n-1), 10**n
return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 09 2021
CROSSREFS
Cf. A017377, A052268, A346509 (ending with 1), A337855 (ending with 5), A337856 (ending with 6), A346950.
KEYWORD
nonn,base,hard,more
AUTHOR
Stefano Spezia, Aug 08 2021
EXTENSIONS
a(6)-a(11) from Michael S. Branicky, Aug 09 2021
a(12)-a(14) from Martin Ehrenstein, Aug 22 2021
STATUS
approved
Positive integers that are the product of two integers ending with 7.
+10
6
49, 119, 189, 259, 289, 329, 399, 459, 469, 539, 609, 629, 679, 729, 749, 799, 819, 889, 959, 969, 999, 1029, 1099, 1139, 1169, 1239, 1269, 1309, 1369, 1379, 1449, 1479, 1519, 1539, 1589, 1649, 1659, 1729, 1739, 1799, 1809, 1819, 1869, 1939, 1989, 2009, 2079, 2109
OFFSET
1,1
FORMULA
Lim_{n->infinity} a(n)/a(n-1) = 1.
EXAMPLE
49 = 7*7, 119 = 7*17, 189 = 7*27, 259 = 7*37, 289 = 17*17, 329 = 7*47, 399 = 7*57, ...
MATHEMATICA
a={}; For[n=0, n<=210, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
PROG
(Python)
def aupto(lim): return sorted(set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
print(aupto(2110)) # Michael S. Branicky, Sep 26 2021
CROSSREFS
Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348055.
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Sep 26 2021
STATUS
approved
Carmichael numbers ending in 9.
+10
5
1729, 294409, 1033669, 1082809, 1773289, 5444489, 7995169, 8719309, 17098369, 19384289, 23382529, 26921089, 37964809, 43620409, 45890209, 50201089, 69331969, 84311569, 105309289, 114910489, 146843929, 168659569, 172947529, 180115489, 188516329, 194120389, 214852609, 228842209, 230996949, 246446929, 271481329
OFFSET
1,1
COMMENTS
The first term is the Hardy-Ramanujan number.
MATHEMATICA
Select[10*Range[0, 3*10^7] + 9, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, May 28 2022 *)
PROG
(Python)
from itertools import islice
from sympy import factorint, nextprime
def A352970_gen(): # generator of terms
p, q = 3, 5
while True:
for n in range(p+11-((p+2) % 10), q, 10):
f = factorint(n)
if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
yield n
p, q = q, nextprime(q)
A352970_list = list(islice(A352970_gen(), 5)) # Chai Wah Wu, May 11 2022
CROSSREFS
Intersection of A002997 and A017377.
Subsequence of A053181.
KEYWORD
nonn,base
AUTHOR
Omar E. Pol, Apr 12 2022
STATUS
approved
Replace decimal digits with their binary values and convert back to decimal representation.
+10
4
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 6, 7, 12, 13, 14, 15, 24, 25, 4, 5, 10, 11, 20, 21, 22, 23, 40, 41, 6, 7, 14, 15, 28, 29, 30, 31, 56, 57, 8, 9, 18, 19, 36, 37, 38, 39, 72, 73, 10, 11, 22, 23, 44, 45, 46, 47, 88, 89, 12, 13, 26, 27, 52, 53, 54, 55, 104, 105, 14, 15, 30, 31, 60, 61, 62
OFFSET
0,3
COMMENTS
m is a local maximum iff m == 9 modulo 10 (see A017377).
A257831 seen as binary numbers: A007088(a(n)) = A257831(n). - Reinhard Zumkeller, May 10 2015
LINKS
EXAMPLE
n=27 -> '2''7' -> '10''111' -> '10111' -> 23: a(27)=23.
See also A257831.
MATHEMATICA
Table[FromDigits[Flatten[IntegerDigits[#, 2]&/@IntegerDigits[n]], 2], {n, 80}] (* Harvey P. Dale, Aug 30 2014 *)
PROG
(Haskell)
import Data.Maybe (mapMaybe)
a080719 = foldr (\b v -> 2 * v + b) 0 .
concat . mapMaybe (flip lookup bin) . a031298_row
where bin = zip [0..9] a030308_tabf
-- Reinhard Zumkeller, May 10 2015
(Python)
def A080719(n):
....return int(''.join((format(int(d), 'b') for d in str(n))), 2)
# Chai Wah Wu, May 10 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Mar 06 2003
EXTENSIONS
a(0)=0 prepended and offset changed by Reinhard Zumkeller, May 10 2015
STATUS
approved
Squares ending in digit 9.
+10
4
9, 49, 169, 289, 529, 729, 1089, 1369, 1849, 2209, 2809, 3249, 3969, 4489, 5329, 5929, 6889, 7569, 8649, 9409, 10609, 11449, 12769, 13689, 15129, 16129, 17689, 18769, 20449, 21609, 23409, 24649, 26569, 27889, 29929, 31329, 33489, 34969, 37249, 38809
OFFSET
1,1
COMMENTS
A quasipolynomial of order two and degree two: a(n) = 25n^2 - 30n + 9 if n is even and 25n^2 - 20n + 4 if n is odd. - Charles R Greathouse IV, Nov 03 2021
FORMULA
G.f.: x*(9 + 40*x + 102*x^2 + 40*x^3 + 9*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 6 + (50*(n-1)*n - 5*(2*n-1)*(-1)^n + 1)/2.
a(n) = A063226(n)^2. - Seiichi Manyama, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3-sqrt(5))/50. - Amiram Eldar, Feb 16 2023
MATHEMATICA
Table[6 + (50 (n - 1) n - 5 (2 n - 1) (-1)^n + 1)/2, {n, 1, 50}]
PROG
(Magma) /* By definition: */ [n^2: n in [0..200] | Modexp(n, 2, 10) eq 9];
(Magma) [6+(50*(n-1)*n-5*(2*n-1)*(-1)^n+1)/2: n in [1..50]];
(PARI) a(n)=(5*n-3+n%2)^2 \\ Charles R Greathouse IV, Nov 03 2021
CROSSREFS
Cf. A017377 (numbers ending in 9), A017379 (cubes ending in 9).
Cf. similar sequences listed in A273373.
KEYWORD
nonn,base,easy
AUTHOR
Vincenzo Librandi, May 21 2016
EXTENSIONS
Corrected and extended by Bruno Berselli, May 21 2016
STATUS
approved

Search completed in 0.038 seconds