[go: up one dir, main page]

login
Search: a014368 -id:a014368
     Sort: relevance | references | number | modified | created      Format: long | short | data
If n = binomial(b,2)+binomial(c,1), b>c>=0 then a(n) = binomial(b+1,3)+binomial(c+1,2).
+10
5
1, 2, 4, 5, 7, 10, 11, 13, 16, 20, 21, 23, 26, 30, 35, 36, 38, 41, 45, 50, 56, 57, 59, 62, 66, 71, 77, 84, 85, 87, 90, 94, 99, 105, 112, 120, 121, 123, 126, 130, 135, 141, 148, 156, 165, 166, 168, 171, 175, 180, 186, 193, 201, 210, 220, 221, 223, 226, 230, 235, 241
OFFSET
1,2
COMMENTS
Triangle-tree numbers: a(n) = sum(b(m), m = 1..n), b(m) = 1,1,2,1,2,3,1,2,3,4,... = A002260. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
REFERENCES
W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, 1993, p. 159.
FORMULA
a(n*(n+1)/2+m)=n*(n+1)*(n+2)/6 + m*(m+1)/2=A000292(n)+ A000217(m), m=0...n+1, n=1, 2, 3.. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n) = a(n-1)+A002260(n). As a triangle with n >= k >= 1: a(n, k) =a(n-1, k)+(n-1)*n/2 =a(n, k-1)+k =(n^3-n+3k^2+3k)/6. - Henry Bottomley, Nov 14 2001
a(n) = b(n) * (b(n) + 1) * (b(n) + 2) / 6 + c(n) * (c(n) + 1) / 2, where b(n) = [sqrt(2 * n) - 1/2] and c(n) = n - b(n) * (b(n) + 1) / 2 - Robert A. Stump (bee_ess107(AT)msn.com), Sep 20 2002
As a triangle, T(n,k) = binomial(n+1, 3) + binomial(k+1,2). - Franklin T. Adams-Watters, Jan 27 2014
EXAMPLE
The triangle starts:
1
2 4
5 7 10
11 13 16 20
21 23 26 30 35
MAPLE
a := 0: for i from 1 to 15 do for j from 1 to i do a := a+j: printf(`%d, `, a); od:od:
CROSSREFS
Cf. A002260, A000292 (main diagonal), A000217, A014368, A014369, A006046, A050407 (1st column), A005581 (subdiagonal), A071239 (row sums), A212013.
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Feb 05 2000
STATUS
approved

Search completed in 0.007 seconds