Displaying 1-10 of 55 results found.
Inverse binomial transform of A003951.
+20
0
1, 8, 55, 386, 2701, 18908, 132355, 926486, 6485401, 45397808, 317784655, 2224492586, 15571448101, 109000136708, 763000956955, 5341006698686, 37387046890801, 261709328235608, 1831965297649255, 12823757083544786
FORMULA
a(n) = 6a(n-1) + 7a(n-2), a(0) = 1, a(1) = 8.
a(2n) = 7a(2n-1) - 1; a(2n+1) = 7a(2n) + 1.
Expansion of g.f. (1+x)/(1-2*x).
+10
212
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
COMMENTS
Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
FORMULA
a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
MAPLE
k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
MATHEMATICA
Table[2^n+Floor[2^(n-1)], {n, 0, 30}] (* Martin Grymel, Oct 17 2012 *)
CoefficientList[Series[(1+x)/(1-2x), {x, 0, 40}], x] (* or *) LinearRecurrence[ {2}, {1, 3}, 40] (* Harvey P. Dale, May 04 2017 *)
CROSSREFS
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
a(n) = (9^n - 1)/8.
(Formerly M4733 N2025)
+10
90
0, 1, 10, 91, 820, 7381, 66430, 597871, 5380840, 48427561, 435848050, 3922632451, 35303692060, 317733228541, 2859599056870, 25736391511831, 231627523606480, 2084647712458321, 18761829412124890, 168856464709124011, 1519708182382116100, 13677373641439044901, 123096362772951404110
COMMENTS
To be precise, the differences are the squares of the powers of three with positive indices. Hence a(n+1) - a(n) = ( A000244(n+1))^2 = A001019(n+1). [Added by Ant King, Jan 05 2011]
Numbers in base 9: 1, 11, 111, 1111, 11111, 111111, 1111111, etc. - Zerinvary Lajos, Apr 26 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=9, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 2, a(n-1) = (-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
Least index k such that A052382(k) >= 10^(n-1), for n > 0.
Also index k such that A052382(k) = (10^n-1)/9, n > 0.
A052382(a(n)) is the least zerofree number with n digits, for n > 0.
For n > 1: A052382(a(n)-1) is the greatest zerofree number with n-1 digits. (End)
For n > 0, 4*a(n) is the total number of holes in a certain triangle fractal (start with 9 triangles, 4 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015
For n > 0, a(n) is the sum of the numerators and denominators of the reduced fractions 0 < (b/3^(n-1)) < 1 plus 1. Example for n=3 gives fractions 1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, and 8/9 plus 1 has sum of numerators and denominators +1 = a(3) = 91. - J. M. Bergot, Jul 11 2015
Except for 0 and 1, all terms are Brazilian repunits numbers in base 9, so belong to A125134. All these terms are composite because a(n) is the ((3^n - 1)/2)-th triangular number. - Bernard Schott, Apr 23 2017
These are also the second steps after the junctions of the Collatz trajectories of 2^(2k-1)-1 and 2^2k-1. - David Rabahy, Nov 01 2017
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
LINKS
Eric Weisstein's World of Mathematics, Repunit
FORMULA
a(n) = 9*a(n-1) + 1; a(1) = 1.
G.f.: x / ((1-x)*(1-9*x)). (End)
a(n) = 10*a(n-1) - 9*a(n-2). - Ant King, Jan 05 2011
Sum_{n>0} a(n)*(-1)^(n+1)*x^(2*n+1)/(2*n+1)! = (1/6)*sin(x)^3. - Vladimir Kruchinin, Sep 30 2012
a(n) = det(|v(i+2,j+1)|, 1 <= i,j <= n-1), where v(n,k) are central factorial numbers of the first kind with odd indices ( A008956) and n > 0. - Mircea Merca, Apr 06 2013
a(n) = Sum_{k=0..n-1} 9^k. - Doug Bell, May 26 2017
EXAMPLE
a(4) = (9^4 - 1)/8 = 820 = 1111_9 = (1/2) * 40 * 41 is the ((3^4 - 1)/2)-th = 40th triangular number. - Bernard Schott, Apr 23 2017
MATHEMATICA
(9^# & /@ Range[0, 18] // Accumulate) (* Ant King, Jan 06 2011 *)
LinearRecurrence[{10, -9}, {0, 1}, 30] (* Harvey P. Dale, Sep 23 2018 *)
PROG
(Maxima) A002452(n):=floor((9^n-1)/8)$
CROSSREFS
Right-hand column 1 in triangle A008958.
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
Expansion of g.f.: (1+x)/(1-7*x).
+10
58
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083256, 5425784582792, 37980492079544, 265863444556808, 1861044111897656, 13027308783283592, 91191161482985144, 638338130380896008
COMMENTS
Coordination sequence for infinite tree with valency 8.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001.
For n>=1, a(n) equals the number of words of length n on the alphabet {0,1,...,7} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 31 2017]
a(n) is the number of octonary sequences of length n such that no two consecutive terms have distance 4. - David Nacin, May 31 2017
FORMULA
a(n) = 8*7^(n-1) for n>=1, a(0)=1 .
G.f.: (1+x)/(1-7x).
The Hankel transform of this sequence is [1,-8,0,0,0,0,0,0,0,0,...]. (End)
MAPLE
k:=8; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
MATHEMATICA
CoefficientList[Series[(1+x)/(1-7*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
PROG
(Sage) k=8; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=8;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
Expansion of g.f. (1+x)/(1-6*x).
+10
57
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472, 25593109080440832, 153558654482644992
COMMENTS
Coordination sequence for infinite tree with valency 7.
For n >= 1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5,6,7} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5,6,7} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 10 2007
For n >= 1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,2,3,5,6} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015
MAPLE
k:=7; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
MATHEMATICA
q = 7; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* or *) Join[{1}, 7*6^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
CoefficientList[Series[(1+x)/(1-6*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
PROG
(Magma) k:=7; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 24 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1+x)/(1-6*x))); // Marius A. Burtea, Jan 20 2020
(Sage) k=7; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=7;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
Expansion of g.f.: (1+x)/(1-9*x).
+10
57
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690, 1500946352969991210, 13508517176729920890
COMMENTS
Coordination sequence for infinite tree with valency 10.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
For n>=1, a(n) equals the number of words of length n on alphabet {0,1,...,9} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 31 2017]
a(n) is the number of sequences over the alphabet {0,1,...,9} of length n such that no two consecutive terms have distance 5. - David Nacin, May 31 2017
FORMULA
The Hankel transform of this sequence is: [1,-10,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
MAPLE
k:= 10; seq(`if`(n = 0, 1, k*(k-1)^(n-1)), n = 0..20); # modified by G. C. Greubel, Sep 24 2019
PROG
(Sage) k=10; [1]+[k*(k-1)^(n-1) for n in (1..20)] # G. C. Greubel, Sep 24 2019
(GAP) k:=10;; Concatenation([1], List([1..20], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
+10
7
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799452, 2533274790395328, 20266198323160356, 162129586585264704
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 28*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
MATHEMATICA
CoefficientList[Series[(t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016 *)
Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.
+10
2
1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
COMMENTS
The n-th row is {T(n,0),T(n,1),...,T(n,n-1)}.
Let m denote the prime power p^e.
T(m,0) = A020478(m) = (p^(e+1) + p^e-1)*p^(2*e-1).
T(m,1) = A000056(m) = (p^2-1)*p^(3*e-2).
Sum_{k=1..n-1} T(n,k) = A005353(n).
T(n,1) = n* A007434(n) for n>=1 because A000056(n) = n*Jordan_Function_J_2(n).
T(2^n,1) = A083233(n) = A164640(2n) for n>=1. Proof: a(n):=T(2^n,1); a(1)=6, a(n)=8*a(n-1); A083233(1)=6 and A083233(n) is a geometric series with ratio 8 (because of its g.f.), too; A164640 = {b(1)=1, b(2)=6, b(n)=8*b(n-2)}.
T(2^n,0) = A165148(n) for n>=0, because 2*T(2^n,0) = (3*2^n-1)*4^n.
T(2^e,2) = A003951(e) for 2 <= e. Proof: T(2^e,2) = 9*8^(e-1) is a series with ratio 8 and initial term 72, as A003951(2...inf) is.
Working with consecutive powers of a prime p, we need a definition (0 <= i < e):
N(p^e,i):=#{k: 0 < k < p^e, gcd(k,p^e) = p^i} = (p-1)*p^(e-1-i). We say that these k's belong to i (respect to p^e). Note that N(p^e,0) = EulerPhi(p^e), and if 0 < k < p^e then gcd(k,p^e) = gcd(k,p^(e+1)). Let T(p^e,[i]) denote the common value of T(p^e,k)'s, where k's belong to i (q.v.PROGRAM); for example, T(p^e,[0]) = T(p^e,1). The number of the 2 X 2 matrices over Z(p^e), T(p^e,0) + Sum_{i=0..e-1} T(p^e,[i])*N(p^e,i) = p^(4e) will be useful.
On the hexagon property: Let prime p be given and let T(p^e,[0]), T(p^e,[1]), T(p^e,[2]), ..., T(p^e,[e-2]), T(p^e,[e-1]) form the e-th row of a Pascal-like triangle, e>=1. Let denote X(r,s) an element of the triangle and its value T(p^r,[s]). Let positive integers a and b given, so that the entries A(m-a,n-b), B(m-a,n), C(m,n+a), D(m+b,n+a), E(m+b,n), F(m,n-b) of the triangle form a hexagon spaced around T(p^m,[n]); if a=b=1 then they surround it. If A*C*E = B*D*F, then we say that the triangle T(.,.) has the "hexagon property". (In the case of binomial coefficients X(r,s) = COMB(r,s), the "hexagon property" holds (see [Gupta]) and moreover gcd(A,C,E) = gcd(B,D,F) (see [Hitotumatu & Sato]).)
Corollary 2.2 in [Brent & McKay] says that, for the d X d matrices over Z(p^e), (mutatis mutandis) T_d(p^e,0) = K*(1-P(d+e-1)/P(e-1)) and T_d(p^e,[i]) = K*(q^e)*((1-q^d)/(1-q))*P(d+i-1)/P(i), where q=1/p, K=(p^e)^(d^2), P(t) = Product_{j=1..t} (1-q^j), P(0):=1. (For the case d=2, we have T(p^e,[i]) = (p+1)*(p^(i+1)-1)*p^(3*e-i-2).) Due to [Brent & McKay], it can be simply proved that for d X d matrices the "hexagon property" is true. The formulation implies an obvious generalization: For the entries A(r,u), B(r,v), C(s,w), D(t,w), E(t,v), F(s,u) of the T_d(.,.)-triangle, a hexagon-like property A*C*E = B*D*F holds. This is false in general for the COMB(.,.)-triangle.
Another (rotated-hexagon-like) property: for the entries A(m-b1,n), B(m-a1,n+c2), C(m+a2,n+c2), D(m+b2,n), E(m+a2,n-c1), F(m-a1,n-c1) of the T_d(.,.)-triangle, the property A*C*E = B*D*F holds, if and only if 2*(a1 + a2) = b1 + b2. This is also in general false for COMB(.,.)-triangle.
FORMULA
T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
EXAMPLE
Triangle begins:
1;
10, 6;
33, 24, 24;
88, 48, 72, 48;
145, 120, 120, 120, 120;
330, 144, 240, 198, 240, 144;
385, 336, 336, 336, 336, 336, 336;
736, 384, 576, 384, 672, 384, 576, 384;
945, 648, 648, 864, 648, 648, 864, 648, 648;
... (End)
PROG
(Other) . (* computing T(p^e, k) ; p=prime, 1<=e, 0<=k<p^e, elementary approach *)
. (1) F := (p-1)*p^(e-1)
. (2) u := [ u(0), u(1), ..., u(p^e-1) ] vector, where
. (21) u(0) := p^e + e*F, and
. (22) FOR x := 1 TO p^e-1
. (22) u(x) := (i+1)*F, where GCD(x, p^e)= p^i
. (22) ENDFOR
. (3) T(p^e, k):= ScalarProduct( u, kTimesCyclicRightShift(u) )
(PARI)
S(p, e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
T(n)={my(f=factor(n), v=vector(n, i, 1)); for(i=1, #f~, my(r=S(f[i, 1], f[i, 2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
+10
1
1, 9, 72, 576, 4608, 36828, 294336, 2352420, 18801216, 150264576, 1200956652, 9598382640, 76712967828, 613111567824, 4900159716480, 39163451657148, 313005296651040, 2501626174048260, 19993698450611424, 159795249138713664
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
a(n) = 7*a(n-1)+7*a(n-2)+7*a(n-3)+7*a(n-4)-28*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, 7, 7, 7, -28}, {1, 9, 72, 576, 4608, 36828}, 30] (* G. C. Greubel, Dec 21 2016 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6)) \\ G. C. Greubel, Dec 21 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6) )); // G. C. Greubel, May 12 2019
(Sage) ((1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
+10
1
1, 9, 72, 576, 4608, 36864, 294876, 2358720, 18867492, 150921792, 1207229184, 9656672256, 77244089580, 617878417968, 4942433025684, 39534710232528, 316239654648960, 2529613056079872, 20234471292326844, 161856307428494112
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)) \\ G. C. Greubel, Aug 13 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7) )); // G. C. Greubel, Aug 10 2019
(Sage)
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)).list()
(GAP) a:=[9, 72, 576, 4608, 36864, 294876];; for n in [7..30] do a[n]:=7*(a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]) -28*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
Search completed in 0.048 seconds
|