[go: up one dir, main page]

login
Search: a003951 -id:a003951
     Sort: relevance | references | number | modified | created      Format: long | short | data
Inverse binomial transform of A003951.
+20
0
1, 8, 55, 386, 2701, 18908, 132355, 926486, 6485401, 45397808, 317784655, 2224492586, 15571448101, 109000136708, 763000956955, 5341006698686, 37387046890801, 261709328235608, 1831965297649255, 12823757083544786
OFFSET
0,2
FORMULA
a(n) = 6a(n-1) + 7a(n-2), a(0) = 1, a(1) = 8.
a(2n) = 7a(2n-1) - 1; a(2n+1) = 7a(2n) + 1.
O.g.f.: -(1+2x)/[(1+x)(7x-1)]. - R. J. Mathar, Apr 02 2008
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jul 23 20050
EXTENSIONS
More terms from R. J. Mathar, Apr 02 2008
STATUS
approved
Expansion of g.f. (1+x)/(1-2*x).
+10
212
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013
LINKS
Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From N. J. A. Sloane, Sep 25 2012
C. Richard and U. Grimm, On the entropy and letter frequencies of ternary squarefree words, arXiv:math/0302302 [math.CO], 2003.
FORMULA
a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023
MAPLE
k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
MATHEMATICA
Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
Table[2^n+Floor[2^(n-1)], {n, 0, 30}] (* Martin Grymel, Oct 17 2012 *)
CoefficientList[Series[(1+x)/(1-2x), {x, 0, 40}], x] (* or *) LinearRecurrence[ {2}, {1, 3}, 40] (* Harvey P. Dale, May 04 2017 *)
PROG
(PARI) a(n)=if(n, 3<<n--, 1) \\ Charles R Greathouse IV, Jan 12 2012
CROSSREFS
Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved
a(n) = (9^n - 1)/8.
(Formerly M4733 N2025)
+10
90
0, 1, 10, 91, 820, 7381, 66430, 597871, 5380840, 48427561, 435848050, 3922632451, 35303692060, 317733228541, 2859599056870, 25736391511831, 231627523606480, 2084647712458321, 18761829412124890, 168856464709124011, 1519708182382116100, 13677373641439044901, 123096362772951404110
OFFSET
0,3
COMMENTS
From David W. Wilson: Numbers triangular, differences square.
To be precise, the differences are the squares of the powers of three with positive indices. Hence a(n+1) - a(n) = (A000244(n+1))^2 = A001019(n+1). [Added by Ant King, Jan 05 2011]
Partial sums of A001019. This is m-th triangular number, where m is partial sums of A000244. a(n) = A000217(A003462(n)). - Lekraj Beedassy, May 25 2004
With offset 0, binomial transform of A003951. - Philippe Deléham, Jul 22 2005
Numbers in base 9: 1, 11, 111, 1111, 11111, 111111, 1111111, etc. - Zerinvary Lajos, Apr 26 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=9, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 2, a(n-1) = (-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
From Hieronymus Fischer, Jan 30 2013: (Start)
Least index k such that A052382(k) >= 10^(n-1), for n > 0.
Also index k such that A052382(k) = (10^n-1)/9, n > 0.
A052382(a(n)) is the least zerofree number with n digits, for n > 0.
For n > 1: A052382(a(n)-1) is the greatest zerofree number with n-1 digits. (End)
For n > 0, 4*a(n) is the total number of holes in a certain triangle fractal (start with 9 triangles, 4 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015
For n > 0, a(n) is the sum of the numerators and denominators of the reduced fractions 0 < (b/3^(n-1)) < 1 plus 1. Example for n=3 gives fractions 1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, and 8/9 plus 1 has sum of numerators and denominators +1 = a(3) = 91. - J. M. Bergot, Jul 11 2015
Except for 0 and 1, all terms are Brazilian repunits numbers in base 9, so belong to A125134. All these terms are composite because a(n) is the ((3^n - 1)/2)-th triangular number. - Bernard Schott, Apr 23 2017
These are also the second steps after the junctions of the Collatz trajectories of 2^(2k-1)-1 and 2^2k-1. - David Rabahy, Nov 01 2017
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.
LINKS
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
M. Ward, Note on divisibility sequences, Bull. Amer. Math. Soc., 42 (1936), 843-845.
Eric Weisstein's World of Mathematics, Repunit
FORMULA
From Philippe Deléham, Mar 13 2004: (Start)
a(n) = 9*a(n-1) + 1; a(1) = 1.
G.f.: x / ((1-x)*(1-9*x)). (End)
a(n) = 10*a(n-1) - 9*a(n-2). - Ant King, Jan 05 2011
a(n) = floor(A000217(3^n)/4) - A033113(n-1). - Arkadiusz Wesolowski, Feb 14 2012
Sum_{n>0} a(n)*(-1)^(n+1)*x^(2*n+1)/(2*n+1)! = (1/6)*sin(x)^3. - Vladimir Kruchinin, Sep 30 2012
a(n) = A011540(A217094(n-1)) - A217094(n-1) + 2, n > 0. - Hieronymus Fischer, Jan 30 2013
a(n) = 10^(n-1) + 2 - A217094(n-1). - Hieronymus Fischer, Jan 30 2013
a(n) = det(|v(i+2,j+1)|, 1 <= i,j <= n-1), where v(n,k) are central factorial numbers of the first kind with odd indices (A008956) and n > 0. - Mircea Merca, Apr 06 2013
a(n) = Sum_{k=0..n-1} 9^k. - Doug Bell, May 26 2017
E.g.f.: exp(5*x)*sinh(4*x)/4. - Stefano Spezia, Mar 11 2023
EXAMPLE
a(4) = (9^4 - 1)/8 = 820 = 1111_9 = (1/2) * 40 * 41 is the ((3^4 - 1)/2)-th = 40th triangular number. - Bernard Schott, Apr 23 2017
MAPLE
A002452 := 1/(9*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
(9^# & /@ Range[0, 18] // Accumulate) (* Ant King, Jan 06 2011 *)
LinearRecurrence[{10, -9}, {0, 1}, 30] (* Harvey P. Dale, Sep 23 2018 *)
PROG
(Magma) [(9^n - 1)/8 : n in [0..25]]; // Vincenzo Librandi, Jun 01 2011
(PARI) a(n)=9^n>>3 \\ Charles R Greathouse IV, Jul 25 2011
(Maxima) A002452(n):=floor((9^n-1)/8)$
makelist(A002452(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
CROSSREFS
Right-hand column 1 in triangle A008958.
KEYWORD
nonn,easy
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
Offset changed from 1 to 0 and added 0 by Vincenzo Librandi, Jun 01 2011
STATUS
approved
Expansion of g.f.: (1+x)/(1-7*x).
+10
58
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083256, 5425784582792, 37980492079544, 265863444556808, 1861044111897656, 13027308783283592, 91191161482985144, 638338130380896008
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 8.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001.
For n>=1, a(n) equals the number of words of length n on the alphabet {0,1,...,7} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 31 2017]
a(n) is the number of octonary sequences of length n such that no two consecutive terms have distance 4. - David Nacin, May 31 2017
FORMULA
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 6. - Philippe Deléham, Jul 10 2005
From Philippe Deléham, Nov 21 2007: (Start)
a(n) = 8*7^(n-1) for n>=1, a(0)=1 .
G.f.: (1+x)/(1-7x).
The Hankel transform of this sequence is [1,-8,0,0,0,0,0,0,0,0,...]. (End)
a(0)=1, a(1)=8, a(n) = 7*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (8*exp(7*x) - 1)/7. - G. C. Greubel, Sep 24 2019
MAPLE
k:=8; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
MATHEMATICA
Join[{1}, 8*7^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
CoefficientList[Series[(1+x)/(1-7*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
PROG
(Magma) [1] cat [8*7^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012
(PARI) a(n)=if(n, 8*7^(n-1), 1) \\ Charles R Greathouse IV, Mar 22 2016
(Sage) k=8; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=8;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
CROSSREFS
KEYWORD
nonn,walk,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved
Expansion of g.f. (1+x)/(1-6*x).
+10
57
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472, 25593109080440832, 153558654482644992
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 7.
For n >= 1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5,6,7} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5,6,7} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 10 2007
For n >= 1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,2,3,5,6} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015
FORMULA
G.f.: (1+x)/(1-6*x).
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 5. - Philippe Deléham, Jul 10 2005
a(0)=1; for n > 0, a(n) = 7*6^(n-1). - Vincenzo Librandi, Nov 18 2010
a(0)=1, a(1)=7, a(n) = 6*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (7*exp(6*x) - 1)/6. - G. C. Greubel, Sep 24 2019
MAPLE
k:=7; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
MATHEMATICA
q = 7; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* or *) Join[{1}, 7*6^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
CoefficientList[Series[(1+x)/(1-6*x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
PROG
(PARI) a(n)=if(n, 7*6^(n-1), 1) \\ Charles R Greathouse IV, Mar 22 2016
(Magma) k:=7; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 24 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1+x)/(1-6*x))); // Marius A. Burtea, Jan 20 2020
(Sage) k=7; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=7;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved
Expansion of g.f.: (1+x)/(1-9*x).
+10
57
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690, 1500946352969991210, 13508517176729920890
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 10.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
Except 1, all terms are in A033583. - Vincenzo Librandi, May 26 2014
For n>=1, a(n) equals the number of words of length n on alphabet {0,1,...,9} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 31 2017]
a(n) is the number of sequences over the alphabet {0,1,...,9} of length n such that no two consecutive terms have distance 5. - David Nacin, May 31 2017
FORMULA
a(n) = (10*9^n - 0^n)/9. Binomial transform is A000042. - Paul Barry, Jan 29 2004
G.f.: (1+x)/(1-9*x). - Philippe Deléham, Jan 31 2004
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 8. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is: [1,-10,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
E.g.f.: (10*exp(9*x) - 1)/9. - G. C. Greubel, Sep 24 2019
MAPLE
k:= 10; seq(`if`(n = 0, 1, k*(k-1)^(n-1)), n = 0..20); # modified by G. C. Greubel, Sep 24 2019
MATHEMATICA
Join[{1}, 10*9^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
Join[{1}, NestList[9#&, 10, 20]] (* Harvey P. Dale, Sep 01 2021 *)
PROG
(Magma) [(10*9^n-0^n)/9: n in [0..20] ]; // Vincenzo Librandi, Aug 19 2011
(PARI) a(n)=10*9^n\9 \\ Charles R Greathouse IV, Sep 08 2011
(Sage) k=10; [1]+[k*(k-1)^(n-1) for n in (1..20)] # G. C. Greubel, Sep 24 2019
(GAP) k:=10;; Concatenation([1], List([1..20], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 15 1996
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
+10
7
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799452, 2533274790395328, 20266198323160356, 162129586585264704
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, -28).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 28*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
MATHEMATICA
CoefficientList[Series[(t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^16 - 7*t^15 - 7*t^14 - 7*t^13 - 7*t^12 - 7*t^11 - 7*t^10 - 7*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016 *)
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.
+10
2
1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
OFFSET
1,2
COMMENTS
The n-th row is {T(n,0),T(n,1),...,T(n,n-1)}.
Let m denote the prime power p^e.
T(m,0) = A020478(m) = (p^(e+1) + p^e-1)*p^(2*e-1).
T(m,1) = A000056(m) = (p^2-1)*p^(3*e-2).
T(prime(n),1) = A127917(n).
Sum_{k=1..n-1} T(n,k) = A005353(n).
T(n,1) = n*A007434(n) for n>=1 because A000056(n) = n*Jordan_Function_J_2(n).
T(2^n,1) = A083233(n) = A164640(2n) for n>=1. Proof: a(n):=T(2^n,1); a(1)=6, a(n)=8*a(n-1); A083233(1)=6 and A083233(n) is a geometric series with ratio 8 (because of its g.f.), too; A164640 = {b(1)=1, b(2)=6, b(n)=8*b(n-2)}.
T(2^n,0) = A165148(n) for n>=0, because 2*T(2^n,0) = (3*2^n-1)*4^n.
T(2^e,2) = A003951(e) for 2 <= e. Proof: T(2^e,2) = 9*8^(e-1) is a series with ratio 8 and initial term 72, as A003951(2...inf) is.
Working with consecutive powers of a prime p, we need a definition (0 <= i < e):
N(p^e,i):=#{k: 0 < k < p^e, gcd(k,p^e) = p^i} = (p-1)*p^(e-1-i). We say that these k's belong to i (respect to p^e). Note that N(p^e,0) = EulerPhi(p^e), and if 0 < k < p^e then gcd(k,p^e) = gcd(k,p^(e+1)). Let T(p^e,[i]) denote the common value of T(p^e,k)'s, where k's belong to i (q.v.PROGRAM); for example, T(p^e,[0]) = T(p^e,1). The number of the 2 X 2 matrices over Z(p^e), T(p^e,0) + Sum_{i=0..e-1} T(p^e,[i])*N(p^e,i) = p^(4e) will be useful.
On the hexagon property: Let prime p be given and let T(p^e,[0]), T(p^e,[1]), T(p^e,[2]), ..., T(p^e,[e-2]), T(p^e,[e-1]) form the e-th row of a Pascal-like triangle, e>=1. Let denote X(r,s) an element of the triangle and its value T(p^r,[s]). Let positive integers a and b given, so that the entries A(m-a,n-b), B(m-a,n), C(m,n+a), D(m+b,n+a), E(m+b,n), F(m,n-b) of the triangle form a hexagon spaced around T(p^m,[n]); if a=b=1 then they surround it. If A*C*E = B*D*F, then we say that the triangle T(.,.) has the "hexagon property". (In the case of binomial coefficients X(r,s) = COMB(r,s), the "hexagon property" holds (see [Gupta]) and moreover gcd(A,C,E) = gcd(B,D,F) (see [Hitotumatu & Sato]).)
Corollary 2.2 in [Brent & McKay] says that, for the d X d matrices over Z(p^e), (mutatis mutandis) T_d(p^e,0) = K*(1-P(d+e-1)/P(e-1)) and T_d(p^e,[i]) = K*(q^e)*((1-q^d)/(1-q))*P(d+i-1)/P(i), where q=1/p, K=(p^e)^(d^2), P(t) = Product_{j=1..t} (1-q^j), P(0):=1. (For the case d=2, we have T(p^e,[i]) = (p+1)*(p^(i+1)-1)*p^(3*e-i-2).) Due to [Brent & McKay], it can be simply proved that for d X d matrices the "hexagon property" is true. The formulation implies an obvious generalization: For the entries A(r,u), B(r,v), C(s,w), D(t,w), E(t,v), F(s,u) of the T_d(.,.)-triangle, a hexagon-like property A*C*E = B*D*F holds. This is false in general for the COMB(.,.)-triangle.
Another (rotated-hexagon-like) property: for the entries A(m-b1,n), B(m-a1,n+c2), C(m+a2,n+c2), D(m+b2,n), E(m+a2,n-c1), F(m-a1,n-c1) of the T_d(.,.)-triangle, the property A*C*E = B*D*F holds, if and only if 2*(a1 + a2) = b1 + b2. This is also in general false for COMB(.,.)-triangle.
LINKS
Richard P. Brent and Brendan D. McKay, Determinants and ranks of random matrices over Z_m, Discrete Mathematics 66 (1987) pp. 35-49.
A. K. Gupta, Generalized hidden hexagon squares, The Fibonacci Quarterly, Vol 12, Number 1, Feb.1974, pp. 45-46.
S. Hitotumatu, D. Sato, Star of David theorem (I), The Fibonacci Quarterly, Vol 13, Number 1, Feb.1975, p. 70.
FORMULA
T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
Sum_{k=1..n-1, gcd(k,n)=1} T(n,k) = A000252(n). - Andrew Howroyd, Jul 16 2018
EXAMPLE
From Andrew Howroyd, Jul 16 2018: (Start)
Triangle begins:
1;
10, 6;
33, 24, 24;
88, 48, 72, 48;
145, 120, 120, 120, 120;
330, 144, 240, 198, 240, 144;
385, 336, 336, 336, 336, 336, 336;
736, 384, 576, 384, 672, 384, 576, 384;
945, 648, 648, 864, 648, 648, 864, 648, 648;
... (End)
PROG
(Other) . (* computing T(p^e, k) ; p=prime, 1<=e, 0<=k<p^e, elementary approach *)
. (1) F := (p-1)*p^(e-1)
. (2) u := [ u(0), u(1), ..., u(p^e-1) ] vector, where
. (21) u(0) := p^e + e*F, and
. (22) FOR x := 1 TO p^e-1
. (22) u(x) := (i+1)*F, where GCD(x, p^e)= p^i
. (22) ENDFOR
. (3) T(p^e, k):= ScalarProduct( u, kTimesCyclicRightShift(u) )
(PARI)
S(p, e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
T(n)={my(f=factor(n), v=vector(n, i, 1)); for(i=1, #f~, my(r=S(f[i, 1], f[i, 2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018
CROSSREFS
Column k=0 is A020478.
Column k=1 is A000056.
Row sums are A005353.
KEYWORD
mult,nonn,tabl
AUTHOR
Erdos Pal, Oct 03 2010
EXTENSIONS
Terms a(24)-a(55) from b-file by Andrew Howroyd, Jul 16 2018
STATUS
approved
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
+10
1
1, 9, 72, 576, 4608, 36828, 294336, 2352420, 18801216, 150264576, 1200956652, 9598382640, 76712967828, 613111567824, 4900159716480, 39163451657148, 313005296651040, 2501626174048260, 19993698450611424, 159795249138713664
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
a(n) = 7*a(n-1)+7*a(n-2)+7*a(n-3)+7*a(n-4)-28*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, 7, 7, 7, -28}, {1, 9, 72, 576, 4608, 36828}, 30] (* G. C. Greubel, Dec 21 2016 *)
coxG[{5, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6)) \\ G. C. Greubel, Dec 21 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6) )); // G. C. Greubel, May 12 2019
(Sage) ((1+x)*(1-x^5)/(1-8*x+35*x^5-28*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
+10
1
1, 9, 72, 576, 4608, 36864, 294876, 2358720, 18867492, 150921792, 1207229184, 9656672256, 77244089580, 617878417968, 4942433025684, 39534710232528, 316239654648960, 2529613056079872, 20234471292326844, 161856307428494112
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(28*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t + 1).
a(n) = -28*a(n-6) + 7*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
coxG[{6, 28, -7}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)) \\ G. C. Greubel, Aug 13 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7) )); // G. C. Greubel, Aug 10 2019
(Sage)
def A163953_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-8*t+35*t^6-28*t^7)).list()
A163953_list(30) # G. C. Greubel, Aug 10 2019
(GAP) a:=[9, 72, 576, 4608, 36864, 294876];; for n in [7..30] do a[n]:=7*(a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]) -28*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved

Search completed in 0.048 seconds