[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a003592 -id:a003592
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of digits in the decimal expansion of the regular unit fractions 1/A003592.
+20
4
1, 2, 1, 3, 1, 4, 2, 2, 5, 3, 2, 6, 4, 2, 3, 7, 5, 3, 3, 8, 6, 4, 3, 9, 4, 7, 5, 3, 10, 4, 8, 6, 4, 11, 4, 9, 5, 7, 5, 12, 4, 10, 5, 8, 6, 13, 4, 11, 5, 9, 6, 7, 14, 5, 12, 5, 10, 6, 8, 15, 6, 13, 5, 11, 6, 9, 16, 7, 7, 14, 5, 12, 6, 10, 17, 7, 8, 15, 6, 13, 6, 11, 18, 7, 9, 16, 8, 7, 14, 6, 12, 19
OFFSET
2,2
LINKS
Eric Weisstein's World of Mathematics, Regular Number
EXAMPLE
1/A003592(2) = 1/2 = 0.5, with 1 digit after the decimal point, so a(2) = 1.
MATHEMATICA
digNum[n_] := Length[(dig = RealDigits[1/n, 10])[[1]]] - dig[[2]]; s = {}; m = 12; Do[n = 5^k; While[n <= 5^m, AppendTo[s, n]; n *= 2], {k, 0, m}]; Rest[digNum /@ Union[s]] (* Amiram Eldar, Feb 08 2020 *)
CROSSREFS
Cf. A003592.
KEYWORD
nonn,base
AUTHOR
Eric W. Weisstein, Apr 02 2006
EXTENSIONS
Offset corrected by Amiram Eldar, Feb 08 2020
STATUS
approved
The number of terms of the form 2^i*5^j (A003592) less than or equal to 10^n.
+20
2
1, 6, 15, 29, 48, 72, 100, 134, 172, 214, 262, 314, 371, 433, 500, 571, 647, 728, 813, 904, 999, 1099, 1204, 1313, 1427, 1546, 1670, 1798, 1932, 2070, 2212, 2359, 2511, 2668, 2829, 2996, 3167, 3342, 3523, 3708, 3898, 4093, 4293, 4497, 4706, 4920, 5138
OFFSET
0,2
LINKS
MATHEMATICA
f[n_] := Sum[1 + Floor@ Log[2, 10^n/5^k], {k, 0, Floor@ Log[5, 10^n]}]; Array[f, 47, 0]
CROSSREFS
Cf. A003592.
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Sep 27 2010
STATUS
approved
a(n) = least k such that A003592(n) | 20^k.
+20
2
0, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 5, 4, 4, 3, 3, 5, 4, 4, 3, 3, 6, 4, 5, 5, 4, 3, 6, 4, 5, 5, 4, 3, 7, 4, 6, 5, 5, 6, 4, 7, 4, 6, 5, 5, 6, 4, 8, 4, 7, 5, 6, 6, 5, 8, 7, 4, 7, 5, 6, 6, 5, 9, 7, 4, 8, 5, 7, 6, 6, 9, 7, 5, 8
OFFSET
1,5
COMMENTS
Also, number of digits in the vigesimal (base 20) expansion of terminating unit fractions 1/A003592.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10212 (A003592(10212) = 20^50)
Eric Weisstein's World of Mathematics, Vigesimal
Wikipedia, Vigesimal
EXAMPLE
a(1) = 0 since A003592(1) = 1 | 20^0.
a(4) = 1 since A003592(4) = 5 | 20^1; 1/5 in base 20 = .4.
a(5) = 2 since A003592(5) = 8 | 20^2; 1/8 in base 20 = .2a, where "a" is digit 10), etc.
MATHEMATICA
With[{nn = 360000}, Sort[Join @@ Table[{2^a*5^b, Max[Ceiling[a/2], b]}, {a, 0, Log2[nn]}, {b, 0, Log[5, nn/(2^a)]}]][[All, -1]] ]
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Michael De Vlieger, Mar 08 2022
STATUS
approved
First differences of A003592.
+20
1
1, 2, 1, 3, 2, 6, 4, 5, 7, 8, 10, 14, 16, 20, 25, 3, 32, 40, 50, 6, 64, 80, 100, 12, 113, 15, 160, 200, 24, 226, 30, 320, 400, 48, 452, 60, 565, 75, 800, 96, 904, 120, 1130, 150, 1600, 192, 1808, 240, 2260, 300, 2825, 375, 384, 3616, 480, 4520, 600, 5650
OFFSET
1,2
COMMENTS
The gaps between the natural numbers whose reciprocals are terminating decimals.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..312 from Barry Wells)
FORMULA
a(n) = A003592(n+1) - A003592(n). - Amiram Eldar, Feb 08 2020
EXAMPLE
The first few terms of A003592 are 1, 2, 4, 5, 8, 10, 16 because 1/1, 1/2, 1,4, 1/5, 1/8 etc. terminate and 1/3, 1/6, 1/7, 1/9 etc. repeat. Hence the denominators of the first few terminating decimals are 1, 2, 4, 5, 8, 10, 16 and the first differences between these gives the sequence 1,2,1,3,2,4
CROSSREFS
Cf. A003592.
KEYWORD
nonn
AUTHOR
Barry Wells (wells.barry(AT)gmail.com), Aug 26 2009, Sep 24 2009
STATUS
approved
Least positive integer m > 1 such that 1 - m^k + m^(2k) - m^(3k) + m^(4k) is prime, where k = A003592(n).
+20
1
2, 4, 2, 6, 2, 20, 20, 26, 25, 10, 14, 5, 373, 4, 65, 232, 56, 2, 521, 911, 1156, 1619, 647, 511, 34, 2336, 2123, 1274, 2866, 951, 2199, 1353, 4965, 7396, 13513, 3692, 14103, 32275, 2257, 86, 3928, 2779, 18781, 85835, 820, 16647, 2468, 26677, 1172, 38361, 40842
OFFSET
1,1
COMMENTS
1 - m^k + m^(2*k) - m^(3^k) + m^(4*k) equals Phi(10*k,m).
First 15 terms were generated by the provided Mathematica program. All other terms found using OpenPFGW as Fermat and Lucas PRP. Term 16-20, 22-24, 27 have N^2-1 factored over 33.3% and proved using OpenPFGW;
terms 21, 25, 29-33, 36, 37, 39, 41, 42, 45, 48, 51 are proved using CHG pari script;
terms 26, 28, 34, 40 are proved using kppm PARI script;
terms 35, 38, 43, 44, 46, 47, 49, 50 do not yet have a primality certificate.
The corresponding prime number of term 51 (40842) has 236089 digits.
The corresponding prime numbers for the following terms are equal:
p(3) = p(2) = Phi(10, 2^4),
p(12) = p(9) = Phi(10, 5^50),
p(18) = p(14) = Phi(10, 2^160),
p(25) = p(21) = Phi(10, 34^512),
p(40) = p(34) = Phi(10, 86^4000).
FORMULA
a(n) = A085398(10*A003592(n)). - Jinyuan Wang, Jan 01 2023
EXAMPLE
n=1, A003592(1) = 1, when a=2, 1 - 2^1 + 2^2 - 2^3 + 2^4 = 11 is prime, so a(1)=2;
n=2, A003592(2) = 2, when a=4, 1 - 4^2 + 4^4 - 4^6 + 4^8 = 61681 is prime, so a(2)=4;
...
n=13, A003592(13) = 64, when a=373, PrimeQ(1 - 373^64 + 373^128 - 373^192 + 373^256) = True, while for a = 2..372, PrimeQ(1 - a^64 + a^128 - a^192 + a^256) = False, so a(13)=373.
MATHEMATICA
fQ[n_] := PowerMod[10, n, n] == 0; a = Select[10 Range@100, fQ]/10; l = Length[a]; Table[m = a[[j]]; i = 1; While[i++; cp = 1 - i^m + i^(2*m)-i^(3*m)+i^(4*m); ! PrimeQ[cp]]; i, {j, 1, l}]
PROG
(PARI) do(k)=my(m=1); while(!ispseudoprime(polcyclo(10*k, m++)), ); m
list(lim)=my(v=List(), N); for(n=0, log(lim)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); apply(do, vecsort(Vec(v))) \\ Charles R Greathouse IV, Apr 04 2012
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Lei Zhou, Apr 04 2012
EXTENSIONS
Term 50 added and comments updated by Lei Zhou, Jul 27 2012
Term 51 added and comments updated by Lei Zhou, Oct 10 2012
STATUS
approved
a(n) = the fractional part of 1 / A003592(n) read backwards.
+20
1
0, 5, 52, 2, 521, 1, 5260, 50, 40, 52130, 520, 20, 526510, 5210, 10, 800, 5218700, 52600, 500, 400, 52609300, 521300, 5200, 200, 521359100, 6100, 5265100, 52100, 100, 5265679000, 8000, 52187000, 526000, 5000, 52182884000, 4000, 526093000, 23000, 5213000, 52000
OFFSET
1,2
COMMENTS
Numbers in this sequence that also appear in A003592, sorted, include the product of numbers k | 10^e with integer e >= 0 and 10^m with m >= e. For instance, the proper divisors of 10 {1, 2, 5} appear and {10, 20, 40, 50} follow, finally {100, 200, 400, 500, 800} followed by any product k 10^m with k = {1, 2, 4, 5, 8} and m >= 3. - Michael De Vlieger, Feb 03 2018
LINKS
FORMULA
a(A180953(n)) = 10^(n-1) for any n > 0.
EXAMPLE
The first terms, alongside A003592(n) and the fractional part of 1/A003592(n), are:
n a(n) A003592(n) frac(1/A003592(n))
-- ---- ---------- ------------------
1 0 1 0
2 5 2 0.5
3 52 4 0.25
4 2 5 0.2
5 521 8 0.125
6 1 10 0.1
7 5260 16 0.0625
8 50 20 0.05
9 40 25 0.04
10 52130 32 0.03125
11 520 40 0.025
12 20 50 0.02
13 526510 64 0.015625
14 5210 80 0.0125
15 10 100 0.01
16 800 125 0.008
17 5218700 128 0.0078125
18 52600 160 0.00625
19 500 200 0.005
20 400 250 0.004
MATHEMATICA
With[{e = 12}, Table[FromDigits@ Reverse@ PadLeft[#1, Length@ #1 + Abs@ #2] - 10 Boole[n == 1] & @@ RealDigits[1/n], {n, Sort@ Flatten@ Table[2^i*5^j, {i, 0, e}, {j, 0, Log[5, 2^(e - i)]}]}]] (* Michael De Vlieger, Feb 03 2018, after Robert G. Wilson v at A003592 *)
PROG
(PARI) mx = 4000; A003592 = vecsort(concat(vector(1+logint(mx, 2), i, vector(1+logint(floor(mx/2^(i-1)), 5), j, 2^(i-1) * 5^(j-1)))))
backward(n) = my (v=0, i=frac(1/n), r=1/10); while (i, v += r*floor(i); i=frac(i)*10; r*=10); v
print (apply(backward, A003592))
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Rémy Sigrist, Feb 01 2018
STATUS
approved
Irregular triangle T(n,k) with row n listing A003592(j) not divisible by 20 such that A352218(A003592(j)) = n.
+20
1
1, 2, 4, 5, 10, 8, 16, 25, 50, 32, 64, 125, 250, 128, 256, 625, 1250, 512, 1024, 3125, 6250, 2048, 4096, 15625, 31250, 8192, 16384, 78125, 156250, 32768, 65536, 390625, 781250, 131072, 262144, 1953125, 3906250, 524288, 1048576, 9765625, 19531250, 2097152, 4194304, 48828125, 97656250
OFFSET
0,2
COMMENTS
All terms in A003592 are products T(n,k)*20^j, j >= 0.
When expressed in base 20, T(n,k) does not end in zero, yet 1/T(n,k) is a terminating fraction, regular to 20.
The first 5 terms are the proper divisors of 20.
For these reasons, the terms may be called vigesimal "proper regular" numbers.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.
LINKS
Eric Weisstein's World of Mathematics, Vigesimal
Wikipedia, Vigesimal
FORMULA
Row 0 contains the empty product, thus row length = 1.
Row n sorts {2^(2n-1), 5^n, 2^(2n), 2*5^n}, thus row length = 4.
EXAMPLE
Row 0 contains 1 since 1 is the empty product.
Row 1 contains 2, 4, 5, and 10 since these divide 20 and are not divisible by 20.
Row 2 contains 8, 16, 25, and 50 since these divide 20^2 but not 20. The other divisors of 20^2 either divide smaller powers of 20 or they are divisible by 20 and do not appear.
Row 3 contains 32, 64, 125, and 250 since these divide 20^3 but not 20^2. The other divisors of 20^3 either divide smaller powers of 20 or they are divisible by 20 therefore do not appear.
MATHEMATICA
{{1}}~Join~Array[Union@ Flatten@ {#, 2 #} &@ {2^(2 # - 1), 5^#} &, 11] // Flatten
CROSSREFS
KEYWORD
nonn,easy,base,tabf
AUTHOR
Michael De Vlieger, Apr 15 2022
STATUS
approved
5-smooth numbers, i.e., numbers whose prime divisors are all <= 5.
+10
114
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405
OFFSET
1,2
COMMENTS
Sometimes called the Hamming sequence, since Hamming asked for an efficient algorithm to generate the list, in ascending order, of all numbers of the form 2^i*3^j*5^k for i,j,k >= 0. The problem was popularized by Edsger Dijkstra.
Numbers k such that 8*k = EulerPhi(30*k). - Artur Jasinski, Nov 05 2008
Where record values greater than 1 occur in A165704: A165705(n) = A165704(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also called "harmonic whole numbers", see Howard and Longair, 1982, Table I, page 121. - Hugo Pfoertner, Jul 16 2020
Also called ugly numbers, although it is not clear why. - Gus Wiseman, May 21 2021
Some woody bamboo species have extraordinarily long and stable flowering intervals that belong to this sequence. The model by Veller, Nowak & Davis justifies this observation from the evolutionary point of view. - Andrey Zabolotskiy, Jun 27 2021
Also those integers k for which, for every prime p > 5, p^(4*k) - 1 == 0 (mod 240*k). - Federico Provvedi, May 23 2022
As noted in the comments to A085152, Størmer's theorem implies that the only pairs of consecutive integers that appear as consecutive terms of this sequence are (1,2), (2,3), (3,4), (4,5), (5,6), (8,9), (9,10), (15,16), (24,25), and (80,81). These all represent significant musical intervals. - Hal M. Switkay, Dec 05 2022
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
M. J. Dominus, Infinite Lists in Perl.
Deborah Howard and Malcolm Longair, Harmonic Proportion and Palladio's "Quattro Libri", Journal of the Society of Architectural Historians (1982) 41 (2): 116-143.
Sci.math, Ugly numbers.
Carl Veller, Martin A. Nowak and Charles C. Davis, Extended flowering intervals of bamboos evolved by discrete multiplication, Ecology Letters, 18 (2015), 653-659.
Eric Weisstein's World of Mathematics, Smooth Number.
Wikipedia, Regular number.
Wikipedia, Talk:Regular number. Includes a discussion of the name.
Wikipedia, Størmer's theorem.
FORMULA
Let s(n) = Card(k | a(k)<n) and f(n) = log(n*sqrt(30))^3/(6*log(2)*log(3)*log(5)). Then s(n) = f(n) + O(log(n)). Conjecture: s(n)=f(n) + O(log log n). For example, s(10000000) = 768 is well approximated by f(10000000) = 769.3... (see graphic given as link). - Benoit Cloitre, Dec 30 2001
The characteristic function of this sequence is given by:
Sum_{n>=1} x^a(n) = Sum_{n>=1} -Möbius(30*n)*x^n/(1-x^n). - Paul D. Hanna, Sep 18 2011
a(n) = A143207(n) / 30. - Reinhard Zumkeller, Sep 13 2011
A204455(15*a(n)) = 15, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
A006530(a(n)) <= 5. - Reinhard Zumkeller, May 16 2015
Sum_{n>=1} 1/a(n) = Product_{primes p <= 5} p/(p-1) = (2*3*5)/(1*2*4) = 15/4. - Amiram Eldar, Sep 22 2020
EXAMPLE
From Gus Wiseman, May 21 2021: (Start)
The sequence of terms together with their prime indices begins:
1: {} 25: {3,3}
2: {1} 27: {2,2,2}
3: {2} 30: {1,2,3}
4: {1,1} 32: {1,1,1,1,1}
5: {3} 36: {1,1,2,2}
6: {1,2} 40: {1,1,1,3}
8: {1,1,1} 45: {2,2,3}
9: {2,2} 48: {1,1,1,1,2}
10: {1,3} 50: {1,3,3}
12: {1,1,2} 54: {1,2,2,2}
15: {2,3} 60: {1,1,2,3}
16: {1,1,1,1} 64: {1,1,1,1,1,1}
18: {1,2,2} 72: {1,1,1,2,2}
20: {1,1,3} 75: {2,3,3}
24: {1,1,1,2} 80: {1,1,1,1,3}
(End)
MAPLE
A051037 := proc(n)
option remember;
local a;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
numtheory[factorset](a) minus {2, 3, 5 } ;
if % = {} then
return a;
end if;
end do:
end if;
end proc:
seq(A051037(n), n=1..100) ; # R. J. Mathar, Nov 05 2017
MATHEMATICA
mx = 405; Sort@ Flatten@ Table[ 2^a*3^b*5^c, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}] (* Or *)
Select[ Range@ 405, Last@ Map[First, FactorInteger@ #] < 7 &] (* Robert G. Wilson v *)
With[{nn=10}, Select[Union[Times@@@Flatten[Table[Tuples[{2, 3, 5}, n], {n, 0, nn}], 1]], #<=2^nn&]] (* Harvey P. Dale, Feb 28 2022 *)
PROG
(PARI) test(n)= {m=n; forprime(p=2, 5, while(m%p==0, m=m/p)); return(m==1)}
for(n=1, 500, if(test(n), print1(n", ")))
(PARI) a(n)=local(m); if(n<1, 0, n=a(n-1); until(if(m=n, forprime(p=2, 5, while(m%p==0, m/=p)); m==1), n++); n)
(PARI) list(lim)=my(v=List(), s, t); for(i=0, logint(lim\=1, 5), t=5^i; for(j=0, logint(lim\t, 3), s=t*3^j; while(s<=lim, listput(v, s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Sep 21 2011; updated Sep 19 2016
(PARI) smooth(P:vec, lim)={ my(v=List([1]), nxt=vector(#P, i, 1), indx, t);
while(1, t=vecmin(vector(#P, i, v[nxt[i]]*P[i]), &indx);
if(t>lim, break); if(t>v[#v], listput(v, t)); nxt[indx]++);
Vec(v)
};
smooth([2, 3, 5], 1e4) \\ Charles R Greathouse IV, Dec 03 2013
(PARI) is_A051037(n)=n<7||vecmax(factor(n, 6)[, 1])<7 \\ M. F. Hasler, Jan 16 2015
(Magma) [n: n in [1..500] | PrimeDivisors(n) subset [2, 3, 5]]; // Bruno Berselli, Sep 24 2012
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a051037 n = a051037_list !! (n-1)
a051037_list = f $ singleton 1 where
f s = y : f (insert (5 * y) $ insert (3 * y) $ insert (2 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
(Python)
def isok(n):
while n & 1 == 0: n >>= 1
while n % 3 == 0: n //= 3
while n % 5 == 0: n //= 5
return n == 1 # Darío Clavijo, Dec 30 2022
(Python)
from sympy import integer_log
def A051037(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x, 5)[0]+1):
for j in range(integer_log(y:=x//5**i, 3)[0]+1):
c -= (y//3**j).bit_length()
return c
return bisection(f, n, n) # Chai Wah Wu, Sep 16 2024
(Python) # faster for initial segment of sequence
import heapq
from itertools import islice
def A051037gen(): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5]
while True:
v = heapq.heappop(h)
if v != oldv:
yield v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A051037gen(), 65))) # Michael S. Branicky, Sep 17 2024
CROSSREFS
Subsequences: A003592, A003593, A051916 , A257997.
For p-smooth numbers with other values of p, see A003586, A002473, A051038, A080197, A080681, A080682, A080683.
The partitions with these Heinz numbers are counted by A001399.
The conjugate opposite is A033942, counted by A004250.
The opposite is A059485, counted by A004250.
The non-3-smooth case is A080193, counted by A069905.
The conjugate is A037144, counted by A001399.
The complement is A279622, counted by A035300.
Requiring the sum of prime indices to be even gives A344297.
KEYWORD
easy,nonn
STATUS
approved
Monotonic ordering of set S generated by these rules: if x and y are in S then x^2 + y^2 is in S, and 1 is in S.
+10
49
1, 2, 5, 8, 26, 29, 50, 65, 68, 89, 128, 677, 680, 701, 740, 842, 845, 866, 905, 1352, 1517, 1682, 2501, 2504, 2525, 2564, 3176, 3341, 4226, 4229, 4250, 4289, 4625, 4628, 4649, 4688, 4901, 5000, 5066, 5300, 5465, 6725, 7124, 7922, 7925, 7946, 7985
OFFSET
1,2
COMMENTS
Let N denote the positive integers, and suppose that f(x,y): N x N->N. Let "start" denote a subset of N, and let S be the set of numbers defined by these rules: if x and y are in S, then f(x,y) is in S, and "start" is a subset of S. The monotonic increasing ordering of S is a sequence:
A192476: f(x,y)=x^2+y^2, start={1}
A003586: f(x,y)=x*y, start={1,2,3}
A051037: f(x,y)=x*y, start={1,2,3,5}
A002473: f(x,y)=x*y, start={1,2,3,5,7}
A003592: f(x,y)=x*y, start={2,5}
A009293: f(x,y)=x*y+1, start={2}
A009388: f(x,y)=x*y-1, start={2}
A009299: f(x,y)=x*y+2, start={3}
A192518: f(x,y)=(x+1)(y+1), start={2}
A192519: f(x,y)=floor(x*y/2), start={3}
A192520: f(x,y)=floor(x*y/2), start={5}
A192521: f(x,y)=floor((x+1)(y+1)/2), start={2}
A192522: f(x,y)=floor((x-1)(y-1)/2), start={5}
A192523: f(x,y)=2x*y-x-y, start={2}
A192525: f(x,y)=2x*y-x-y, start={3}
A192524: f(x,y)=4x*y-x-y, start={1}
A192528: f(x,y)=5x*y-x-y, start={1}
A192529: f(x,y)=3x*y-x-y, start={2}
A192531: f(x,y)=3x*y-2x-2y, start={2}
A192533: f(x,y)=x^2+y^2-x*y, start={2}
A192535: f(x,y)=x^2+y^2+x*y, start={1}
A192536: f(x,y)=x^2+y^2-floor(x*y/2), start={1}
A192537: f(x,y)=x^2+y^2-x*y/2, start={2}
A192539: f(x,y)=2x*y+floor(x*y/2), start={1}
LINKS
EXAMPLE
1^2+1^2=2, 1^2+2^2=5, 2^2+2^2=8, 1^2+5^2=26.
MATHEMATICA
start = {1}; f[x_, y_] := x^2 + y^2 (* start is a subset of t, and if x, y are in t then f(x, y) is in t. *)
b[z_] := Block[{w = z}, Select[Union[Flatten[AppendTo[w, Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, i}]]]], # < 30000 &]];
t = FixedPoint[b, start] (* A192476 *)
Differences[t]
(* based on program by Robert G. Wilson v at A009293 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a192476 n = a192476_list !! (n-1)
a192476_list = f [1] (singleton 1) where
f xs s =
m : f xs' (foldl (flip insert) s' (map (+ m^2) (map (^ 2) xs')))
where xs' = m : xs
(m, s') = deleteFindMin s
-- Reinhard Zumkeller, Aug 15 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 01 2011
STATUS
approved
Period of decimal representation of 1/n.
+10
47
1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 6, 6, 1, 1, 16, 1, 18, 1, 6, 2, 22, 1, 1, 6, 3, 6, 28, 1, 15, 1, 2, 16, 6, 1, 3, 18, 6, 1, 5, 6, 21, 2, 1, 22, 46, 1, 42, 1, 16, 6, 13, 3, 2, 6, 18, 28, 58, 1, 60, 15, 6, 1, 6, 2, 33, 16, 22, 6, 35, 1, 8, 3, 1, 18, 6, 6, 13, 1, 9, 5, 41, 6, 16, 21, 28, 2, 44, 1
OFFSET
1,7
COMMENTS
Appears to be a divisor of A007733*A007736. - Henry Bottomley, Dec 20 2001
Primes p such that a(p) = p-1 are in A001913. - Dmitry Kamenetsky, Nov 13 2008
When 1/n has a finite decimal expansion (namely, when n = 2^a*5^b), a(n) = 1 while A051626(n) = 0. - M. F. Hasler, Dec 14 2015
a(n.n) >= a(n) where n.n is A020338(n). - Davide Rotondo, Jun 13 2024
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 159 etc.
FORMULA
Note that if n=r*s where r is a power of 2 and s is odd then a(n)=a(s). Also if n=r*s where r is a power of 5 and s is not divisible by 5 then a(n) = a(s). So we just need a(n) for n not divisible by 2 or 5. This is the smallest number m such that n divides 10^m - 1; m is a divisor of phi(n), where phi = A000010.
phi(n) = n-1 only if n is prime and since a(n) divides phi(n), a(n) can only equal n-1 if n is prime. - Scott Hemphill (hemphill(AT)alumni.caltech.edu), Nov 23 2006
a(n)=a(A132740(n)); a(A132741(n))=a(A003592(n))=1. - Reinhard Zumkeller, Aug 27 2007
MAPLE
A007732 := proc(n)
a132740 := 1 ;
for pe in ifactors(n)[2] do
if not op(1, pe) in {2, 5} then
a132740 := a132740*op(1, pe)^op(2, pe) ;
end if;
end do:
if a132740 = 1 then
1 ;
else
numtheory[order](10, a132740) ;
end if;
end proc:
seq(A007732(n), n=1..50) ; # R. J. Mathar, May 05 2023
MATHEMATICA
Table[r = n/2^IntegerExponent[n, 2]/5^IntegerExponent[n, 5]; MultiplicativeOrder[10, r], {n, 100}] (* T. D. Noe, Oct 17 2012 *)
PROG
(PARI) a(n)=znorder(Mod(10, n/2^valuation(n, 2)/5^valuation(n, 5))) \\ Charles R Greathouse IV, Jan 14 2013
(Sage)
def a(n):
n = ZZ(n)
rad = 2**n.valuation(2) * 5**n.valuation(5)
return Zmod(n // rad)(10).multiplicative_order()
[a(n) for n in range(1, 20)]
# F. Chapoton, May 03 2020
(Python)
from sympy import n_order, multiplicity
def A007732(n): return n_order(10, n//2**multiplicity(2, n)//5**multiplicity(5, n)) # Chai Wah Wu, Feb 07 2022
CROSSREFS
KEYWORD
nonn,base,easy,nice
AUTHOR
N. J. A. Sloane, Hal Sampson [ hals(AT)easynet.com ]
EXTENSIONS
More terms from James A. Sellers, Feb 05 2000
STATUS
approved

Search completed in 0.045 seconds