[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a003594 -id:a003594
     Sort: relevance | references | number | modified | created      Format: long | short | data
7-smooth numbers: positive numbers whose prime divisors are all <= 7.
(Formerly M0477 N0177)
+10
159
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 162, 168, 175, 180, 189, 192
OFFSET
1,2
COMMENTS
Also called humble numbers; sometimes also called highly composite numbers, but this usually refers to A002182.
Successive numbers k such that phi(210k) = 48k. - Artur Jasinski, Nov 05 2008
The divisors of 10! (A161466) are a finite subsequence. - Reinhard Zumkeller, Jun 10 2009
Numbers n such that A198487(n) > 0 and A107698(n) > 0. - Jaroslav Krizek, Nov 04 2011
A262401(a(n)) = a(n). - Reinhard Zumkeller, Sep 25 2015
Numbers which are products of single-digit numbers. - N. J. A. Sloane, Jul 02 2017
Phi(a(n)) is 7-smooth. In fact, the Euler Phi function applied to p-smooth numbers, for any prime p, is p-smooth. - Richard Locke Peterson, May 09 2020
Also those integers k, such that, for every prime p > 5, p^(12k) - 1 == 0 (mod 5040k). - Federico Provvedi, Jun 06 2022
The nonprimes with this property are all terms except for 2, 3, 5 and 7, i.e.: (1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, ...); the composite terms are all but the first one of this subsequence. ["Trivial" data provided mainly for search purpose.] - M. F. Hasler, Jun 06 2023
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 52.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 5841 terms from N. J. A. Sloane)
Raphael Schumacher, The Formulas for the Distribution of the 3-Smooth, 5-Smooth, 7-Smooth and all other Smooth Numbers, arXiv preprint arXiv:1608.06928 [math.NT], 2016.
University of Ulm, The first 5842 terms.
Eric Weisstein's World of Mathematics, Smooth Number.
Wikipedia, Smooth number
FORMULA
A006530(a(n)) <= 7. - Reinhard Zumkeller, Apr 01 2012
Sum_{n>=1} 1/a(n) = Product_{primes p <= 7} p/(p-1) = (2*3*5*7)/(1*2*4*6) = 35/8. - Amiram Eldar, Sep 22 2020
MATHEMATICA
Select[Range[250], Max[Transpose[FactorInteger[ # ]][[1]]]<=7&]
aa = {}; Do[If[EulerPhi[210 n] == 48 n, AppendTo[aa, n]], {n, 1, 1200}]; aa (* Artur Jasinski, Nov 05 2008 *)
mxExp = 8; Select[Union[Times @@@ Flatten[Table[Tuples[{2, 3, 5, 7}, n], {n, mxExp}], 1]], # <= 2^mxExp &] (* Harvey P. Dale, Aug 13 2012 *)
mx = 200; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}] (* Robert G. Wilson v, Aug 17 2012 *)
PROG
(PARI) test(n)=m=n; forprime(p=2, 7, while(m%p==0, m=m/p)); return(m==1)
for(n=1, 200, if(test(n), print1(n", ")))
(PARI) is_A002473(n)=n<11||vecmax(factor(n, 8)[, 1])<8 \\ M. F. Hasler, Jan 16 2015
(PARI) list(lim)=my(v=List(), t); for(a=0, logint(lim\1, 7), for(b=0, logint(lim\7^a, 5), for(c=0, logint(lim\7^a\5^b, 3), t=3^c*5^b*7^a; while(t<=lim, listput(v, t); t<<=1)))); Set(v) \\ Charles R Greathouse IV, Feb 22 2017
(Haskell)
import Data.Set (singleton, deleteFindMin, fromList, union)
a002473 n = a002473_list !! (n-1)
a002473_list = f $ singleton 1 where
f s = x : f (s' `union` fromList (map (* x) [2, 3, 5, 7]))
where (x, s') = deleteFindMin s
-- Reinhard Zumkeller, Mar 08 2014, Apr 02 2012, Apr 01 2012
(Magma) [n: n in [1..200] | PrimeDivisors(n) subset PrimesUpTo(7)]; // Bruno Berselli, Sep 24 2012
(Python)
import heapq
from itertools import islice
from sympy import primerange
def A002473gen(p=7): # generate all p-smooth terms
v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
while True:
v = heapq.heappop(h)
if v != oldv:
yield v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A002473gen(), 65))) # Michael S. Branicky, Nov 19 2022
(Python)
from sympy import integer_log
def A002473(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x, 7)[0]+1):
i7 = 7**i
m = x//i7
for j in range(integer_log(m, 5)[0]+1):
j5 = 5**j
r = m//j5
for k in range(integer_log(r, 3)[0]+1):
c -= (r//3**k).bit_length()
return c
return bisection(f, n, n) # Chai Wah Wu, Sep 16 2024
CROSSREFS
Subsequence of A080672, complement of A068191. Subsequences: A003591, A003594, A003595, A195238, A059405.
Not the same as A063938. For p-smooth numbers with other values of p, see A003586, A051037, A051038, A080197, A080681, A080682, A080683.
Cf. A002182, A067374, A210679, A238985 (zeroless terms), A006530.
Cf. A262401.
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Dec 23 1999
Additional comments from Michel Lecomte, Jun 09 2007
Edited by M. F. Hasler, Jan 16 2015
STATUS
approved
Numbers of the form 2^i*5^j with i, j >= 0.
+10
105
1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800
OFFSET
1,2
COMMENTS
These are the natural numbers whose reciprocals are terminating decimals. - David Wasserman, Feb 26 2002
A132726(a(n), k) = 0 for k <= a(n); A051626(a(n)) = 0; A132740(a(n)) = 1; A132741(a(n)) = a(n). - Reinhard Zumkeller, Aug 27 2007
Where record values greater than 1 occur in A165706: A165707(n) = A165706(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also numbers that are divisible by neither 10k - 7, 10k - 3, 10k - 1 nor 10k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
A204455(5*a(n)) = 5, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
Since p = 2 and q = 5 are coprime, sum_{n >= 1} 1/a(n) = sum_{i >= 0} sum_{j >= 0} 1/p^i * 1/q^j = sum_{i >= 0} 1/p^i q/(q - 1) = p*q/((p-1)*(q-1)) = 2*5/(1*4) = 2.5. - Franklin T. Adams-Watters, Jul 07 2014
Conjecture: Each positive integer n not among 1, 4 and 12 can be written as a sum of finitely many numbers of the form 2^a*5^b + 1 (a,b >= 0) with no one dividing another. This has been verified for n <= 3700. - Zhi-Wei Sun, Apr 18 2023
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 73.
LINKS
Eric Weisstein's World of Mathematics, Regular Number
Eric Weisstein's World of Mathematics, Decimal Expansion
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(10*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
a(n) ~ exp(sqrt(2*log(2)*log(5)*n)) / sqrt(10). - Vaclav Kotesovec, Sep 22 2020
MAPLE
isA003592 := proc(n)
if n = 1 then
true;
else
return (numtheory[factorset](n) minus {2, 5} = {} );
end if;
end proc:
A003592 := proc(n)
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA003592(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jul 16 2012
MATHEMATICA
twoFiveableQ[n_] := PowerMod[10, n, n] == 0; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Jan 12 2012 *)
twoFiveableQ[n_] := Union[ MemberQ[{1, 3, 7, 9}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 10]] == {False}; twoFiveableQ[1] = True; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Oct 26 2010 *)
maxExpo = 14; Sort@ Flatten@ Table[2^i * 5^j, {i, 0, maxExpo}, {j, 0, Log[5, 2^(maxExpo - i)]}] (* Or *)
Union@ Flatten@ NestList[{2#, 4#, 5#} &, 1, 7] (* Robert G. Wilson v, Apr 16 2011 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim+.5)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Sage)
def isA003592(n) :
return not any(d != 2 and d != 5 for d in prime_divisors(n))
@CachedFunction
def A003592(n) :
if n == 1 : return 1
k = A003592(n-1) + 1
while not isA003592(k) : k += 1
return k
[A003592(n) for n in (1..48)] # Peter Luschny, Jul 20 2012
(Magma) [n: n in [1..10000] | PrimeDivisors(n) subset [2, 5]]; // Bruno Berselli, Sep 24 2012
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003592 n = a003592_list !! (n-1)
a003592_list = f $ singleton 1 where
f s = y : f (insert (2 * y) $ insert (5 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
(Python)
# A003592.py
from heapq import heappush, heappop
def A003592():
pq = [1]
seen = set(pq)
while True:
value = heappop(pq)
yield value
seen.remove(value)
for x in 2*value, 5*value:
if x not in seen:
heappush(pq, x)
seen.add(x)
sequence = A003592()
A003592_list = [next(sequence) for _ in range(100)]
(GAP) Filtered([1..10000], n->PowerMod(10, n, n)=0); # Muniru A Asiru, Mar 19 2019
CROSSREFS
Complement of A085837. Cf. A094958, A022333 (list of j), A022332 (list of i).
KEYWORD
nonn,easy
EXTENSIONS
Incomplete Python program removed by David Radcliffe, Jun 27 2016
STATUS
approved
Numbers of form 2^i*7^j, with i, j >= 0.
+10
26
1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 196, 224, 256, 343, 392, 448, 512, 686, 784, 896, 1024, 1372, 1568, 1792, 2048, 2401, 2744, 3136, 3584, 4096, 4802, 5488, 6272, 7168, 8192, 9604, 10976, 12544, 14336, 16384, 16807, 19208, 21952, 25088
OFFSET
1,2
COMMENTS
A204455(7*a(n)) = 7, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 100 terms from Vincenzo Librandi)
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(14*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
Sum_{n>=1} 1/a(n) = (2*7)/((2-1)*(7-1)) = 7/3. - Amiram Eldar, Sep 22 2020
a(n) ~ exp(sqrt(2*log(2)*log(7)*n)) / sqrt(14). - Vaclav Kotesovec, Sep 22 2020
MATHEMATICA
fQ[n_] := PowerMod[14, n, n]==0; Select[Range[30000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(7), N=7^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(PARI) isA003591(n)=n>>=valuation(n, 2); ispower(n, , &n); n==1||n==7 \\ Charles R Greathouse IV, Jun 28 2011
(Magma) [n: n in [1..26000] | PrimeDivisors(n) subset [2, 7]]; // Bruno Berselli, Sep 24 2012
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003591 n = a003591_list !! (n-1)
a003591_list = f $ singleton 1 where
f s = y : f (insert (2 * y) $ insert (7 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
(GAP) Filtered([1..30000], n->PowerMod(14, n, n)=0); # Muniru A Asiru, Mar 19 2019
(Python)
from sympy import integer_log
def A003591(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((x//7**i).bit_length() for i in range(integer_log(x, 7)[0]+1))
return bisection(f, n, n) # Chai Wah Wu, Sep 16 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved
Numbers of the form (11^i)*(13^j).
+10
20
1, 11, 13, 121, 143, 169, 1331, 1573, 1859, 2197, 14641, 17303, 20449, 24167, 28561, 161051, 190333, 224939, 265837, 314171, 371293, 1771561, 2093663, 2474329, 2924207, 3455881, 4084223, 4826809, 19487171, 23030293, 27217619
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (11*13)/((11-1)*(13-1)) = 143/120. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(11)*log(13)*n)) / sqrt(143). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
mx = 3*10^7; Sort@ Flatten@ Table[ 11^i*13^j, {i, 0, Log[11, mx]}, {j, 0, Log[13, mx/11^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
fQ[n_]:=PowerMod[143, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a108090 n = a108090_list !! (n-1)
a108090_list = f $ singleton (1, 0, 0) where
f s = y : f (insert (11 * y, i + 1, j) $ insert (13 * y, i, j + 1) s')
where ((y, i, j), s') = deleteFindMin s
-- Reinhard Zumkeller, May 15 2015
(Magma) [n: n in [1..10^7] | PrimeDivisors(n) subset [11, 13]]; // Vincenzo Librandi, Jun 27 2016
(PARI) list(lim)=my(v=List(), t); for(j=0, logint(lim\=1, 13), t=13^j; while(t<=lim, listput(v, t); t*=11)); Set(v) \\ Charles R Greathouse IV, Aug 29 2016
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 03 2005
STATUS
approved
Numbers of the form 5^i*7^j with i, j >= 0.
+10
19
1, 5, 7, 25, 35, 49, 125, 175, 245, 343, 625, 875, 1225, 1715, 2401, 3125, 4375, 6125, 8575, 12005, 15625, 16807, 21875, 30625, 42875, 60025, 78125, 84035, 109375, 117649, 153125, 214375, 300125, 390625, 420175, 546875, 588245, 765625, 823543, 1071875, 1500625
OFFSET
1,2
COMMENTS
Successive k such that phi(35*k) = 24*k: 35*a(n) = A033851(n). - Artur Jasinski, Nov 09 2008
FORMULA
Sum_{n>=1} 1/a(n) = (5*7)/((5-1)*(7-1)) = 35/24. - Amiram Eldar, Sep 22 2020
a(n) ~ exp(sqrt(2*log(5)*log(7)*n)) / sqrt(35). - Vaclav Kotesovec, Sep 22 2020
MATHEMATICA
a = {}; Do[If[EulerPhi[35 k] == 24 k, AppendTo[a, k]], {k, 1, 10000}]; a (* Artur Jasinski, Nov 09 2008 *)
fQ[n_] := PowerMod[35, n, n] == 0; Select[Range[600000], fQ] (* Bruno Berselli, Sep 24 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(7), N=7^n; while(N<=lim, listput(v, N); N*=5)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Magma) [n: n in [1..600000] | PrimeDivisors(n) subset [5, 7]]; // Bruno Berselli, Sep 24 2012
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003595 n = a003595_list !! (n-1)
a003595_list = f $ singleton 1 where
f s = y : f (insert (5 * y) $ insert (7 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
(Python)
from sympy import integer_log
def A003595(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(integer_log(x//7**i, 5)[0]+1 for i in range(integer_log(x, 7)[0]+1))
return bisection(f, n, n) # Chai Wah Wu, Sep 16 2024
KEYWORD
nonn
STATUS
approved
Numbers of the form (2^i)*(13^j).
+10
13
1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 128, 169, 208, 256, 338, 416, 512, 676, 832, 1024, 1352, 1664, 2048, 2197, 2704, 3328, 4096, 4394, 5408, 6656, 8192, 8788, 10816, 13312, 16384, 17576, 21632, 26624, 28561, 32768, 35152, 43264, 53248, 57122
OFFSET
1,2
COMMENTS
A204455(13*a(n)) = 13, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..100 from Vincenzo Librandi)
FORMULA
Sum_{n>=1} 1/a(n) = (2*13)/((2-1)*(13-1)) = 13/6. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(2)*log(13)*n)) / sqrt(26). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
fQ[n_] := PowerMod[26, n, n]==0; Select[Range[60000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)
mx = 60000; Sort@ Flatten@ Table[2^i*13^j, {i, 0, Log[2, mx]}, {j, 0, Log[13, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(13), N=13^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), May 21 2005
STATUS
approved
Numbers of the form (3^i)*(13^j).
+10
12
1, 3, 9, 13, 27, 39, 81, 117, 169, 243, 351, 507, 729, 1053, 1521, 2187, 2197, 3159, 4563, 6561, 6591, 9477, 13689, 19683, 19773, 28431, 28561, 41067, 59049, 59319, 85293, 85683, 123201, 177147, 177957, 255879, 257049, 369603, 371293, 531441
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (3*13)/((3-1)*(13-1)) = 13/8. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(3)*log(13)*n)) / sqrt(39). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
mx = 540000; Sort@ Flatten@ Table[3^i*13^j, {i, 0, Log[3, mx]}, {j, 0, Log[13, mx/3^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
fQ[n_]:=PowerMod[39, n, n] == 0; Select[Range[2 10^7], fQ] (* Vincenzo Librandi, Jun 27 2016 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(13), N=13^n; while(N<=lim, listput(v, N); N*=3)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Magma) [n: n in [1..10^7] | PrimeDivisors(n) subset [3, 13]]; // Vincenzo Librandi, Jun 27 2016
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), May 23 2005
STATUS
approved
Numbers of the form (5^i)*(13^j).
+10
10
1, 5, 13, 25, 65, 125, 169, 325, 625, 845, 1625, 2197, 3125, 4225, 8125, 10985, 15625, 21125, 28561, 40625, 54925, 78125, 105625, 142805, 203125, 274625, 371293, 390625, 528125, 714025, 1015625, 1373125, 1856465, 1953125, 2640625
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (5*13)/((5-1)*(13-1)) = 65/48. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(5)*log(13)*n)) / sqrt(65). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
mx = 2700000; Sort@ Flatten@ Table[5^i*13^j, {i, 0, Log[5, mx]}, {j, 0, Log[13, mx/5^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(13), N=13^n; while(N<=lim, listput(v, N); N*=5)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
KEYWORD
nonn
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), May 27 2005
STATUS
approved
Numbers of the form (7^i)*(13^j).
+10
9
1, 7, 13, 49, 91, 169, 343, 637, 1183, 2197, 2401, 4459, 8281, 15379, 16807, 28561, 31213, 57967, 107653, 117649, 199927, 218491, 371293, 405769, 753571, 823543, 1399489, 1529437, 2599051, 2840383, 4826809, 5274997, 5764801, 9796423, 10706059, 18193357, 19882681
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = (7*13)/((7-1)*(13-1)) = 91/72. - Amiram Eldar, Sep 23 2020
a(n) ~ exp(sqrt(2*log(7)*log(13)*n)) / sqrt(91). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
n = 10^7; Flatten[Table[7^i*13^j, {i, 0, Log[7, n]}, {j, 0, Log[13, n/7^i]}]] // Sort (* Amiram Eldar, Sep 23 2020 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(13), N=13^n; while(N<=lim, listput(v, N); N*=7)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Python)
from sympy import integer_log
def A108056(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(integer_log(x//13**i, 7)[0]+1 for i in range(integer_log(x, 13)[0]+1))
return bisection(f, n, n) # Chai Wah Wu, Oct 22 2024
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 02 2005
EXTENSIONS
More terms from Amiram Eldar, Sep 23 2020
STATUS
approved
Numbers of the form (2^i)*(3^j)*(7^k), with i, j, k >= 0.
+10
7
1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 27, 28, 32, 36, 42, 48, 49, 54, 56, 63, 64, 72, 81, 84, 96, 98, 108, 112, 126, 128, 144, 147, 162, 168, 189, 192, 196, 216, 224, 243, 252, 256, 288, 294, 324, 336, 343, 378, 384, 392, 432, 441, 448, 486, 504, 512, 567
OFFSET
1,2
COMMENTS
Numbers m | 42^e with integer e >= 0. - Michael De Vlieger, Aug 22 2019
Sum_{n>=1} 1/a(n) = (2*3*7)/((2-1)*(3-1)*(7-1)) = 7/2. - Amiram Eldar, Sep 24 2020
LINKS
FORMULA
a(n) ~ exp((6*log(2)*log(3)*log(7)*n)^(1/3)) / sqrt(42). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
With[{n = 567}, Sort@ Flatten@ Table[2^i * 3^j * 7^k, {i, 0, Log2@ n}, {j, 0, Log[3, n/2^i]}, {k, 0, Log[7, n/(2^i*3^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
PROG
(PARI) list(lim)=my(v=List(), s, t); for(i=0, logint(lim\=1, 7), t=7^i; for(j=0, logint(lim\t, 3), s=t*3^j; while(s<=lim, listput(v, s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Nov 20 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 30 2005
STATUS
approved

Search completed in 0.013 seconds