[go: up one dir, main page]

login
Search: a003556 -id:a003556
     Sort: relevance | references | number | modified | created      Format: long | short | data
Tetrahedral numbers of the form k^2 - 1.
+10
2
0, 35, 120, 2024, 2600, 43680, 435730689800
OFFSET
1,2
COMMENTS
This sequence is finite by Siegel's theorem on integral points. The next term, if it exists, is greater than 10^35. - David Radcliffe, Jan 01 2024
MAPLE
select(t -> issqr(t+1), [seq(i*(i+1)*(i+2)/6, i=0..10^6)]); # Robert Israel, Jan 02 2024
MATHEMATICA
t = {}; Do[tet = n (n + 1) (n + 2)/6; If[IntegerQ[Sqrt[tet + 1]], AppendTo[t, tet]], {n, 0, 100000}]; t (* T. D. Noe, Mar 18 2013 *)
PROG
(Python)
import math
for i in range(1<<33):
t = i*(i+1)*(i+2)/6 + 1
sr = math.isqrt(t)
if sr*sr == t:
print (t-1, sep=' ')
(PARI)
A000292(n) = n*(n+1)*(n+2)\6;
for(n=0, 10^9, t=A000292(n); if (issquare(t+1), print1(t, ", ") ) );
/* Joerg Arndt, Mar 16 2013 */
CROSSREFS
Cf. A003556 (both square and tetrahedral).
KEYWORD
nonn,more,fini
AUTHOR
Alex Ratushnyak, Mar 15 2013
STATUS
approved
Numbers n such that n^2 - 1 is a tetrahedral number (A000292).
+10
2
1, 6, 11, 45, 51, 209, 660099
OFFSET
1,2
COMMENTS
Corresponding tetrahedral numbers are in A216268.
The curve 6*(x^2-1)-y*(y+1)*(y+2)=0 is elliptic, and has finitely many integral points by Siegel's theorem. - Robert Israel, Apr 22 2021
MATHEMATICA
t = {}; Do[tet = n (n + 1) (n + 2)/6; If[IntegerQ[s = Sqrt[tet + 1]], AppendTo[t, s]], {n, 0, 100000}]; t (* T. D. Noe, Mar 18 2013 *)
PROG
(Python)
import math
for i in range(1<<30):
t = i*(i+1)*(i+2)//6 + 1
sr = int(math.sqrt(t))
if sr*sr == t:
print(sr)
CROSSREFS
Cf. A003556 (both square and tetrahedral).
KEYWORD
nonn,fini
AUTHOR
Alex Ratushnyak, Mar 15 2013
STATUS
approved
Squarefree part of the n-th tetrahedral number.
+10
2
1, 1, 10, 5, 35, 14, 21, 30, 165, 55, 286, 91, 455, 35, 170, 51, 969, 285, 1330, 385, 1771, 506, 23, 26, 13, 91, 406, 1015, 4495, 310, 341, 374, 6545, 1785, 7770, 2109, 9139, 2470, 2665, 2870, 12341, 3311, 14190, 3795, 16215, 1081, 94, 1, 17, 221, 23426, 689, 2915, 770, 7315, 7714, 32509, 8555
OFFSET
1,3
FORMULA
a(n) = A007913(A000292(n)).
PROG
(Python)
from sympy.ntheory.factor_ import core
def A361671(n): return core(n*(n*(n + 3) + 2)//6) # Chai Wah Wu, Mar 20 2023
(PARI) a(n) = core(n*(n+1)*(n+2)/6); \\ Michel Marcus, Mar 22 2023
CROSSREFS
Cf. A007913, A000292, A361670 (of triangular), A083481 (of oblong).
Cf. A003556 (squarefree part is 1).
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 20 2023
STATUS
approved
Numbers that are both centered triangular and tetrahedral.
+10
1
1, 4, 10, 4960, 428536
OFFSET
1,2
COMMENTS
If it exists, a(6) > 10^29. - Bert Dobbelaere, Apr 12 2019
LINKS
Eric Weisstein's World of Mathematics, Centered Triangular Number
Eric Weisstein's World of Mathematics, Tetrahedral Number
CROSSREFS
Intersection of A000292 and A005448.
KEYWORD
nonn,more
AUTHOR
Ilya Gutkovskiy, Apr 10 2019
STATUS
approved
Numbers that are both tetrahedral and pronic.
+10
0
0, 20, 56, 7140, 1414910
OFFSET
1,2
COMMENTS
Intersection of A000292 and A002378.
MATHEMATICA
t = {}; Do[tet = n (n + 1) (n + 2)/6; s = Floor[Sqrt[tet]]; If[s^2 + s == tet, AppendTo[t, tet]], {n, 0, 1000}]; t (* T. D. Noe, Mar 18 2013 *)
With[{nn=50000}, Intersection[Binomial[Range[0, nn]+2, 3], Table[n(n+1), {n, nn}]]] (* Harvey P. Dale, Apr 04 2016 *)
PROG
(Python)
def rootPronic(a):
sr = 1<<33
while a < sr*(sr+1):
sr>>=1
b = sr>>1
while b:
s = sr+b
if a >= s*(s+1):
sr = s
b>>=1
return sr
for i in range(1<<20):
a = i*(i+1)*(i+2)//6
t = rootPronic(a)
if a == t*(t+1):
print(a)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Alex Ratushnyak, Mar 15 2013
STATUS
approved
Numbers simultaneously square and heptagonal pyramidal.
+10
0
0, 1, 196, 99225
OFFSET
1,3
COMMENTS
Is this sequence finite?
No other terms < 10^32. - Michael S. Branicky, Jul 12 2022
EXAMPLE
196 is a term because 196 = 14^2 is a perfect square and 196 = 6*(6+1)*(5*6-2)/6 is the 6th heptagonal pyramidal number.
MAPLE
select(issqr, [seq(n*(n+1)*(5*n-2)/6, n=0..50)])[]; # Alois P. Heinz, Apr 21 2022
MATHEMATICA
Select[Table[n*(n + 1)*(5*n - 2)/6, {n, 0, 100}], IntegerQ @ Sqrt[#] &] (* Amiram Eldar, Apr 21 2022 *)
CROSSREFS
Intersection of A000290 and A002413.
Cf. A003556 (tetrahedral and square), 1 and 4900 are only squares that are square pyramidal, A277792 (pentagonal pyramidal and square).
KEYWORD
nonn,more
AUTHOR
Kelvin Voskuijl, Apr 21 2022
STATUS
approved

Search completed in 0.005 seconds