[go: up one dir, main page]

login
Search: a003226 -id:a003226
     Sort: relevance | references | number | modified | created      Format: long | short | data
Subsequence of the automorphic numbers (A003226) with initial term 5 and such that a(n+1) ends with the digits of a(n).
+20
2
5, 25, 625, 12890625, 6259918212890625, 4106619977392256259918212890625, 80863811000557423423230896109004106619977392256259918212890625
OFFSET
1,1
COMMENTS
An automorphic number is a number whose square ends in the same digits as the number itself.
The next term has 126 digits.
LINKS
PROG
(PARI)
seq(m, maxn) = L=List(); for(j=1, maxn, listput(L, m); m=(3*m^2-2*m^3)%10 ^ (2*sizedigit(m))); Vec(L)
seq(5, 8)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Colin Barker, Jun 24 2016
STATUS
approved
Subsequence of the automorphic numbers (A003226) with initial term 6 and such that a(n+1) ends with the digits of a(n).
+20
2
6, 76, 139376, 114087109376, 792415373740081787109376, 88398678125844615295893380022607743740081787109376, 3724919229963099270422168663257939520419136188999442576576769103890995893380022607743740081787109376
OFFSET
1,1
COMMENTS
An automorphic number is a number whose square ends in the same digits as the number itself.
The next term has 200 digits.
LINKS
PROG
(PARI)
seq(m, maxn) = L=List(); for(j=1, maxn, listput(L, m); m=(3*m^2-2*m^3)%10 ^ (2*sizedigit(m))); Vec(L)
seq(6, 8)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Colin Barker, Jun 24 2016
STATUS
approved
a(n) is the number which, when concatenated with A003226(n), the n-th automorphic number, gives (A003226(n))^2.
+20
0
0, 0, 2, 3, 6, 57, 141, 390, 8790, 82128, 11963, 793212, 835571, 5054322, 1661682, 75880433, 45322418, 619541169, 319375992, 6745157241, 3317093849, 66891312600, 843114912509, 9837094694375, 16065496578813, 35901922360062, 67557477392256, 547721051611007
OFFSET
1,3
COMMENTS
Let na and nb represent the indices of the preceding and next A003226(n)'s beginning with a 9, and where (na - nb) >= 3 (note that the first such 'zone' begins with an exception for which the index A003226(na) = 1). Then for na < n < nb and such that n == (na + 1) mod 2, it appears that A003226(n) - a(n) = A003226(n+1) - a(n+1) = k.
In such cases, it also appears that a(n)*a(n+1) = k^2 - k.
FORMULA
a(n) = (A003226(n)*(A003226(n) - 1) / 10^c(A003226(n)) where c(A003226(n)) is the number of digits in the n-th entry of A003226.
EXAMPLE
For n=4, A003226(4)=6, (A003226(4))^2=36. So a(4)=3.
For n=13, A003226(13)=2890625, (A003226(13))^2=8355712890625. So a(13)=835571.
PROG
(PARI) auto(n) = {n<3 & return(n-1); my(i=10, j=10, b=5, c=6, a=b); for( k=4, n, while(b<=a, b=b^2%i*=10); while(c<=a, c=(2-c)*c%j*=10); a=min(b, c)); a; } \\ A003226
a(n) = {my(m = auto(n), dm = digits(m), dm2 = digits(m^2)); fromdigits(vector(#dm2 - #dm, k, dm2[k])); } \\ Michel Marcus, May 18 2019
CROSSREFS
Cf. A003226.
KEYWORD
nonn,base
AUTHOR
Christopher Hohl, Mar 24 2019
STATUS
approved
Congruent to 0 or 1 mod 5.
+10
38
0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 41, 45, 46, 50, 51, 55, 56, 60, 61, 65, 66, 70, 71, 75, 76, 80, 81, 85, 86, 90, 91, 95, 96, 100, 101, 105, 106, 110, 111, 115, 116, 120, 121, 125, 126, 130, 131, 135, 136, 140, 141, 145, 146, 150, 151
OFFSET
1,3
COMMENTS
Numbers k that have the same last digit as k^2.
REFERENCES
L. E. Dickson, History of the Theory of Numbers, I, p. 459.
FORMULA
a(n) = 5*n - a(n-1) - 9, n >= 2. - Vincenzo Librandi, Nov 18 2010 [Corrected for offset by David Lovler, Oct 10 2022]
G.f.: x^2*(1+4*x) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 07 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*A146523(k). - Philippe Deléham, Oct 17 2011
a(n) = floor((5/3)*floor(3*(n-1)/2)). - Clark Kimberling, Jul 04 2012
a(n) = (10*n - 13 - 3*(-1)^n)/4. - Robert Israel, Nov 17 2014 [Corrected by David Lovler, Sep 21 2022]
E.g.f.: 4 + ((10*x - 13)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 11 2022
Sum_{n>=2} (-1)^n/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/(2*sqrt(5)) + log(5)/4, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 12 2022
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+5 od: seq(a[n], n=0..61); # Zerinvary Lajos, Mar 16 2008
MATHEMATICA
Select[Range[0, 151], MemberQ[{0, 1}, Mod[#, 5]] &] (* T. D. Noe, Mar 31 2013 *)
PROG
(Haskell)
a008851 n = a008851_list !! (n-1)
a008851_list = [10*n + m | n <- [0..], m <- [0, 1, 5, 6]]
-- Reinhard Zumkeller, Jul 27 2011
(PARI) a(n) = 5*(n\2)+bitand(n, 1); /* Joerg Arndt, Mar 31 2013 */
(PARI) a(n) = floor((5/3)*floor(3*(n-1)/2)); /* Joerg Arndt, Mar 31 2013 */
(Magma) [n: n in [0..200] | n mod 5 in {0, 1}]; // Vincenzo Librandi, Nov 17 2014
KEYWORD
nonn,easy
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Jul 27 2011
STATUS
approved
The 10-adic integer x = ...8212890625 satisfying x^2 = x.
+10
38
5, 2, 6, 0, 9, 8, 2, 1, 2, 8, 1, 9, 9, 5, 2, 6, 5, 2, 2, 9, 3, 7, 7, 9, 9, 1, 6, 6, 0, 1, 4, 0, 0, 9, 0, 1, 6, 9, 8, 0, 3, 2, 3, 2, 4, 3, 2, 4, 7, 5, 5, 0, 0, 0, 1, 1, 8, 3, 6, 8, 0, 8, 5, 9, 0, 5, 6, 6, 1, 2, 6, 0, 0, 9, 8, 9, 0, 5, 8, 3, 9, 2, 0, 8, 9, 6, 1, 8, 0, 1, 9, 1, 3, 7, 0, 0, 3, 5, 9, 3, 0, 9, 3, 6, 2, 4, 6, 7
OFFSET
0,1
COMMENTS
The 10-adic numbers a and b defined in this sequence and A018248 satisfy a^2=a, b^2=b, a+b=1, ab=0. - Michael Somos
REFERENCES
W. W. R. Ball, Mathematical Recreations & Essays, N.Y. Macmillan Co, 1947.
V. deGuerre and R. A. Fairbairn, Jnl. Rec. Math., No. 3, (1968), 173-179.
M. Kraitchik, Sphinx, 1935, p. 1.
LINKS
Anthony Edey, Automorphic numbers, taken from Madachy's Mathematical Recreations, Dover 1979.
V. deGuerre and R. A. Fairbairn, Automorphic numbers, Jnl. Rec. Math., 1 (No. 3, 1968), 173-179.
Eric Weisstein's World of Mathematics, Automorphic numbers.
FORMULA
x = 10-adic lim_{n->oo} 5^(2^n) mod 10^(n+1). - Paul D. Hanna, Jul 08 2006
EXAMPLE
x = ...0863811000557423423230896109004106619977392256259918212890625.
MATHEMATICA
a = {5}; f[n_] := Block[{k = 0, c}, While[c = FromDigits[Prepend[a, k]]; Mod[c^2, 10^n] != c, k++ ]; a = Prepend[a, k]]; Do[ f[n], {n, 2, 105}]; Reverse[a]
With[{n = 150}, Reverse[IntegerDigits[PowerMod[5, 2^n, 10^n]]]] (* IWABUCHI Yu(u)ki, Feb 16 2024 *)
PROG
(PARI) a(n)=local(t=5); for(k=1, n+1, t=t^2%10^k); t\10^n \\ Paul D. Hanna, Jul 08 2006
(PARI) Vecrev(digits(lift(chinese(Mod(1, 2^100), Mod(0, 5^100))))) \\ Seiichi Manyama, Aug 07 2019
CROSSREFS
A007185 gives associated automorphic numbers.
The difference between A018248 & this sequence is A075693 and their product is A075693.
The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.
KEYWORD
base,nonn
AUTHOR
Yoshihide Tamori (yo(AT)salk.edu)
EXTENSIONS
More terms from David W. Wilson
Edited by David W. Wilson, Sep 26 2002
STATUS
approved
Automorphic numbers ending in digit 5: a(n) = 5^(2^n) mod 10^n.
(Formerly M3940)
+10
35
5, 25, 625, 625, 90625, 890625, 2890625, 12890625, 212890625, 8212890625, 18212890625, 918212890625, 9918212890625, 59918212890625, 259918212890625, 6259918212890625, 56259918212890625, 256259918212890625, 2256259918212890625, 92256259918212890625
OFFSET
1,1
COMMENTS
Conjecture: For any m coprime to 10 and for any k, the density of n such that a(n) == k (mod m) is 1/m. - Eric M. Schmidt, Aug 01 2012
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 5^n and a(n) - 1 is divisible by 2^n. - Eric M. Schmidt, Aug 18 2012
REFERENCES
V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-4.
Ya. I. Perelman, Algebra can be fun, pp. 97-98.
C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
C. P. Schut, Idempotents, Report AM-R9101, Centre for Mathematics and Computer Science, Amsterdam, 1991. (Annotated scanned copy)
Eric Weisstein's World of Mathematics, Automorphic Number
Xiaolong Ron Yu, Curious Numbers, Pi Mu Epsilon Journal, Spring 1999, pp. 819-823.
FORMULA
a(n) = 5^(2^n) mod 10^n.
a(n)^2 == a(n) (mod 10^n), that is, a(n) is an idempotent in Z[10^n].
a(n+1) = a(n)^2 mod 10^(n+1). - Eric M. Schmidt, Jul 28 2012
a(2n) = (3*a(n)^2 - 2*a(n)^3) mod 10^(2n). - Sylvie Gaudel, Mar 10 2018
EXAMPLE
625 is in the sequence because 625^2 = 390625, which ends in 625.
90625 is in the sequence because 90625^2 = 8212890625, which ends in 90625.
90635 is not in the sequence because 90635^2 = 8214703225, which does not end in 90635.
MAPLE
a:= n-> 5&^(2^n) mod 10^n: seq(a(n), n=1..25); # Alois P. Heinz, Mar 11 2018
MATHEMATICA
Table[PowerMod[5, 2^n, 10^n], {n, 25}] (* Vincenzo Librandi, Jun 11 2016 *)
PROG
(Sage) [crt(1, 0, 2^n, 5^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012
(PARI) A007185(n)=lift(Mod(5, 10^n)^2^n) \\ M. F. Hasler, Dec 05 2012
(Magma) [Modexp(5, 2^n, 10^n): n in [1..30]]; // Vincenzo Librandi, Jun 11 2016
CROSSREFS
A018247 gives the associated 10-adic number.
A003226 = {0, 1} union (this sequence) union A016090.
KEYWORD
nonn,base
EXTENSIONS
More terms from David W. Wilson
Edited by David W. Wilson, Sep 26 2002
Further edited by N. J. A. Sloane, Jul 21 2010
Comment moved to name by Alonso del Arte, Mar 10 2018
STATUS
approved
a(n) = 16^(5^n) mod 10^n: Automorphic numbers ending in digit 6, with repetitions.
+10
32
6, 76, 376, 9376, 9376, 109376, 7109376, 87109376, 787109376, 1787109376, 81787109376, 81787109376, 81787109376, 40081787109376, 740081787109376, 3740081787109376, 43740081787109376, 743740081787109376, 7743740081787109376, 7743740081787109376
OFFSET
1,1
COMMENTS
Also called congruent numbers.
a(n)^2 == a(n) (mod 10^n), that is, a(n) is idempotent of Z[10^n].
Conjecture: For any m coprime to 10 and for any k, the density of n such that a(n) == k (mod m) is 1/m. - Eric M. Schmidt, Aug 01 2012
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 2^n and a(n) - 1 is divisible by 5^n. - Eric M. Schmidt, Aug 18 2012
REFERENCES
R. Cuculière, Jeux Mathématiques, in Pour la Science, No. 6 (1986), 10-15.
V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-4.
Ya. I. Perelman, Algebra can be fun, pp. 97-98.
A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see pp. 63, 419.
C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.
LINKS
Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
C. P. Schut, Idempotents, Report AM-R9101, Centre for Mathematics and Computer Science, Amsterdam, 1991. (Annotated scanned copy)
Eric Weisstein's World of Mathematics, Automorphic Number
Xiaolong Ron Yu, Curious Numbers, Pi Mu Epsilon Journal, Spring 1999, pp. 819-823.
FORMULA
a(n) = 16^(5^n) mod 10^n.
a(n+1) == 2*a(n) - a(n)^2 (mod 10^(n+1)). - Eric M. Schmidt, Jul 28 2012
a(n) = 6^(5^n) mod 10^n. - Sylvie Gaudel, Feb 17 2018
a(2*n) = (3*a(n)^2 - 2*a(n)^3) mod 10^(2*n). - Sylvie Gaudel, Mar 12 2018
a(n) = 6^5^(n-1) mod 10^n. - M. F. Hasler, Jan 26 2020
a(n) = 2^(10^n) mod 10^n for n >= 2. - Peter Bala, Nov 10 2022
EXAMPLE
a(5) = 09376 because 09376^2 == 87909376 ends in 09376.
MAPLE
[seq(16 &^ 5^n mod 10^n, n=1..22)]; # Muniru A Asiru, Mar 20 2018
MATHEMATICA
Array[PowerMod[16, 5^#, 10^#] &, 18] (* Michael De Vlieger, Mar 13 2018 *)
PROG
(Sage) [crt(0, 1, 2^n, 5^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012
(PARI) A016090(n)=lift(Mod(6, 10^n)^5^(n-1)) \\ M. F. Hasler, Dec 05 2012, edited Jan 26 2020
(Magma) [Modexp(16, 5^n, 10^n): n in [1..30]]; // Bruno Berselli, Mar 13 2018
(GAP) List([1..22], n->PowerModInt(16, 5^n, 10^n)); # Muniru A Asiru, Mar 20 2018
CROSSREFS
A018248 gives the associated 10-adic number.
A003226 = {0, 1} union A007185 union (this sequence).
KEYWORD
nonn,base
EXTENSIONS
Edited by David W. Wilson, Sep 26 2002
Definition corrected by M. F. Hasler, Dec 05 2012
STATUS
approved
The 10-adic integer x = ...1787109376 satisfies x^2 = x.
+10
29
6, 7, 3, 9, 0, 1, 7, 8, 7, 1, 8, 0, 0, 4, 7, 3, 4, 7, 7, 0, 6, 2, 2, 0, 0, 8, 3, 3, 9, 8, 5, 9, 9, 0, 9, 8, 3, 0, 1, 9, 6, 7, 6, 7, 5, 6, 7, 5, 2, 4, 4, 9, 9, 9, 8, 8, 1, 6, 3, 1, 9, 1, 4, 0, 9, 4, 3, 3, 8, 7, 3, 9, 9, 0, 1, 0, 9, 4, 1, 6, 0, 7, 9, 1, 0, 3, 8, 1, 9, 8, 0, 8, 6, 2, 9, 9, 6, 4, 0, 6, 9, 0, 6, 3, 7, 5, 3, 2
OFFSET
0,1
COMMENTS
The 10-adic numbers a and b defined in A018247 and this sequence satisfy a^2=a, b^2=b, a+b=1, ab=0. - Michael Somos
REFERENCES
W. W. R. Ball, Mathematical Recreations & Essays, N.Y. Macmillan Co, 1947.
R. Cuculière, Jeux Mathématiques, in Pour la Science, No. 6 (1986), 10-15.
V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
M. Kraitchik, Sphinx, 1935, p. 1.
A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see pp. 63, 419.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..9999 (terms 0..999 from Paul D. Hanna).
Peter Bala, A note on A018248
V. deGuerre and R. A. Fairbairn, Automorphic numbers, Jnl. Rec. Math., 1 (No. 3, 1968), 173-179.
Eric Weisstein's World of Mathematics, Automorphic numbers (1)
FORMULA
x = r^4 where r=...1441224165530407839804103263499879186432 (A120817). x = 10-adic limit_{n->oo} 6^(5^n). - Paul D. Hanna, Jul 06 2006
For n >= 2, the final n+1 digits of either 2^(10^n), 4^(10^n) or 6^(10^n), when read from right to left, give the first n+1 entries in the sequence. - Peter Bala, Nov 05 2022
EXAMPLE
x equals the limit of the (n+1) trailing digits of 6^(5^n):
6^(5^0)=(6), 6^(5^1)=77(76), 6^(5^2)=28430288029929701(376), ...
x = ...9442576576769103890995893380022607743740081787109376.
From Peter Bala, Nov 05 2022: (Start)
Trailing digits of 2^(10^n), 4^(10^n) and 6^(10^n) for n = 5:
2^(10^5) = ...9883(109376);
4^(10^5) = ...7979(109376);
6^(10^5) = ...4155(109376). (End)
MAPLE
a := proc (n) option remember; if n = 1 then 2 else irem(a(n-1)^10, 10^n) end if; end proc:
# display the digits of a(100) from right to left
S := convert(a(100), string):
with(ListTools):
the_List := [seq(parse(S[i]), i = 1..length(S))]:
Reverse(the_List); # Peter Bala, Nov 04 2022
MATHEMATICA
b = {6}; g[n_] := Block[{k = 0, c}, While[c = FromDigits[Prepend[b, k]]; Mod[c^2, 10^n] != c, k++ ]; b = Prepend[b, k]]; Do[ g[n], {n, 2, 105}]; Reverse[b]
With[{n = 150}, Reverse[IntegerDigits[PowerMod[16, 5^n, 10^n]]]] (* IWABUCHI Yu(u)ki, Feb 16 2024 *)
PROG
(PARI) {a(n)=local(b=6, v=[]); for(k=1, n+1, b=b^5%10^k; v=concat(v, (10*b\10^k))); v[n+1]} \\ Paul D. Hanna, Jul 06 2006
(PARI) Vecrev(digits(lift(chinese(Mod(0, 2^100), Mod(1, 5^100))))) \\ Seiichi Manyama, Aug 07 2019
CROSSREFS
A016090 gives associated automorphic numbers.
The difference between this sequence & A018247 is A075693 and their product is A075693.
The six examples given by deGuerre and Fairbairn are A055620, A054869, A018247, A018248, A259468, A259469.
KEYWORD
nonn,base
AUTHOR
Yoshihide Tamori (yo(AT)salk.edu)
EXTENSIONS
More terms from David W. Wilson
Edited by David W. Wilson, Sep 26 2002
STATUS
approved
Numbers k such that the decimal expansion of k^2 contains k as a substring.
+10
27
0, 1, 5, 6, 10, 25, 50, 60, 76, 100, 250, 376, 500, 600, 625, 760, 1000, 2500, 3760, 3792, 5000, 6000, 6250, 7600, 9376, 10000, 14651, 25000, 37600, 50000, 60000, 62500, 76000, 90625, 93760, 100000, 109376, 250000, 376000, 495475, 500000, 505025
OFFSET
1,3
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..200 (first 126 terms from David W. Wilson)
EXAMPLE
25^2 = 625 which contains 25.
3792^2 = 14_3792_64, 14651^2 = 2_14651_801.
MATHEMATICA
Select[Range[510000], MemberQ[FromDigits /@ Partition[IntegerDigits[#^2], IntegerLength[#], 1], #] &] (* Jayanta Basu, Jun 29 2013 *)
Select[Range[0, 510000], StringPosition[ToString[#^2], ToString[#]]!={}&] (* Ivan N. Ianakiev, Oct 02 2016 *)
PROG
(Haskell)
import Data.List (isInfixOf)
a018834 n = a018834_list !! (n-1)
a018834_list = filter (\x -> show x `isInfixOf` show (x^2)) [0..]
-- Reinhard Zumkeller, Jul 27 2011
(Python)
from itertools import count, islice
def A018834_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:str(n) in str(n**2), count(max(startvalue, 0)))
A018834_list = list(islice(A018834_gen(), 20)) # Chai Wah Wu, Apr 04 2023
CROSSREFS
Cf. A000290. Supersequence of A029943.
Cf. A018826 (base 2), A018827 (base 3), A018828 (base 4), A018829 (base 5), A018830 (base 6), A018831 (base 7), A018832 (base 8), A018833 (base 9).
Cf. A029942 (cubes), A075904 (4th powers), A075905 (5th powers).
KEYWORD
nonn,base
STATUS
approved
Automorphic numbers: n^2 ends with n in base 6.
+10
12
0, 1, 3, 4, 9, 28, 81, 136, 1216, 6561, 16768, 29889, 76545, 203392, 636417, 1043200, 3995649, 6082048, 24151041, 36315136, 326481921, 689278977, 1487503360, 11573190657, 76876660737, 155240824833, 314944159744, 785129144320, 2035980763137, 4857090670593
OFFSET
1,3
LINKS
EXAMPLE
From A201821:
a(3) = (3)_6 = 3 since 3^2 = 9 = (13)_6 ends with 3 in base 6.
a(4) = (4)_6 = 4 since 4^2 = 16 = (24)_6 ends with 4 in base 6.
a(5) = (13)_6 = 9 since 9^2 = 81 = (213)_6 ends with 13 in base 6.
PROG
(Sage) # See A003226.
(PARI) isok(n) = ((n^2-n) % 6^(#digits(n, 6))) == 0; \\ Michel Marcus, Mar 08 2014
CROSSREFS
Cf. A201821 (written in base 6), A003226, A201918, A201919, A201921, A201948.
KEYWORD
nonn,base
AUTHOR
Eric M. Schmidt, Feb 09 2014
STATUS
approved

Search completed in 0.022 seconds