Displaying 1-7 of 7 results found.
page
1
Integers n such that 2*11^n-1 is prime.
+10
6
2, 8, 248, 2474, 2900, 6600, 24746, 105704
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
FORMULA
a(n) = n-th integer k such that 2*11^k-1 is prime.
EXAMPLE
a(1)=2 since 2*11^2-1=241 is the first prime of this form.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d", k, n) fi od od;
MATHEMATICA
Select[Range[0, 200000], PrimeQ[2*11^# - 1] &] (* Robert Price, Nov 06 2015 *)
Integers k such that 2*5^k - 1 is prime.
+10
5
4, 6, 16, 24, 30, 54, 96, 178, 274, 1332, 2766, 3060, 4204, 17736, 190062, 223536, 260400, 683080
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
EXAMPLE
a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d ", k, n) fi od od;
MATHEMATICA
Select[Range[0, 100], PrimeQ[2*5^# - 1] &] (* Robert Price, Mar 14 2015 *)
PROG
(PARI) isok(k) = ispseudoprime(2*5^k-1); \\ Altug Alkan, Sep 22 2018
EXTENSIONS
a(14) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 02 2007
Primes of the form 2*7^k - 1.
+10
5
13, 97, 4801, 33613, 1356446145697, 383162462761132828801, 6439811511626359453675213, 5303461691719306943558046763201, 1498096661930372466988988205389128987297, 81072431194288773664131732218033347601750444502024167492384908896001
COMMENTS
All terms are of the form 12*k + 1. - Altug Alkan, Sep 22 2018
EXAMPLE
2*7^1 - 1 = 13, 2*7^2 - 1 = 97, and 2*7^4 - 1 = 4801 are primes, but 2*7^3 - 1 = 685 is not.
PROG
(Magma) [a: n in [0..100] | IsPrime(a) where a is 2*7^n-1 ]; // Vincenzo Librandi, Jul 26 2012
(PARI) for(k=1, 1e3, if(ispseudoprime(p=2*7^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018
Least k such that 2*n^k - 1 is prime.
+10
3
1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
COMMENTS
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
MATHEMATICA
f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
PROG
(PARI) a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015
CROSSREFS
Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).
Primes of the form 2*11^n-1.
+10
3
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
The n<1000 that yield primes are 2, 8, 248. - T. D. Noe, Nov 16 2006
FORMULA
a(n) = n-th number such that 2*11^k-1 that is prime for some k.
EXAMPLE
a(1)=241 since 2*11^2-1=241 is the first prime.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d", k, n) fi od od;
MATHEMATICA
Select[2*11^Range[1000]-1, PrimeQ] (* T. D. Noe, Nov 16 2006 *)
Primes of the form 2*5^k - 1.
+10
2
1249, 31249, 305175781249, 119209289550781249, 1862645149230957031249, 111022302462515654042363166809082031249, 25243548967072377773175314089049159349542605923488736152648925781249
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
EXAMPLE
a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d", k, n) fi od od;
PROG
(PARI) for(k=1, 1e3, if(ispseudoprime(p=2*5^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018
Primes of the form 2*6^k - 1.
+10
1
11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
COMMENTS
Companion sequence of A057472. There are 49 terms known in this sequence.
EXAMPLE
2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
MATHEMATICA
Select[Table[2*6^k-1, {k, 1600}], PrimeQ[#]&] (* K. D. Bajpai, Nov 15 2019 *)
PROG
(PARI) for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
(Magma) [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1]; // K. D. Bajpai, Nov 15 2019
Search completed in 0.010 seconds
|