[go: up one dir, main page]

login
Search: a002959 -id:a002959
     Sort: relevance | references | number | modified | created      Format: long | short | data
Integers n such that 2*11^n-1 is prime.
+10
6
2, 8, 248, 2474, 2900, 6600, 24746, 105704
OFFSET
1,1
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
a(9) > 2*10^5. - Robert Price, Nov 06 2015
FORMULA
a(n) = n-th integer k such that 2*11^k-1 is prime.
EXAMPLE
a(1)=2 since 2*11^2-1=241 is the first prime of this form.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d", k, n) fi od od;
MATHEMATICA
Select[Range[0, 200000], PrimeQ[2*11^# - 1] &] (* Robert Price, Nov 06 2015 *)
KEYWORD
more,nonn
AUTHOR
Walter Kehowski, Jun 28 2006
EXTENSIONS
More terms from Ryan Propper, Jan 14 2008
a(7)-a(8) from Robert Price, Nov 06 2015
STATUS
approved
Integers k such that 2*5^k - 1 is prime.
+10
5
4, 6, 16, 24, 30, 54, 96, 178, 274, 1332, 2766, 3060, 4204, 17736, 190062, 223536, 260400, 683080
OFFSET
1,1
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
a(16) > 2*10^5. - Robert Price, Mar 14 2015
FORMULA
a(n) = 2*A002958(n).
EXAMPLE
a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d ", k, n) fi od od;
MATHEMATICA
Select[Range[0, 100], PrimeQ[2*5^# - 1] &] (* Robert Price, Mar 14 2015 *)
PROG
(PARI) isok(k) = ispseudoprime(2*5^k-1); \\ Altug Alkan, Sep 22 2018
(Magma) [n: n in [0..2800] |IsPrime(2*5^n - 1)]; // Vincenzo Librandi, Sep 23 2018
CROSSREFS
Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), this sequence (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.
KEYWORD
nonn,more
AUTHOR
Walter Kehowski, Jun 28 2006
EXTENSIONS
More terms from Ryan Propper, Mar 28 2007
a(14) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 02 2007
a(15) from Robert Price, Mar 14 2015
a(16)-a(18) from Jorge Coveiro and Tyler NeSmith, Jun 14 2020
STATUS
approved
Primes of the form 2*7^k - 1.
+10
5
13, 97, 4801, 33613, 1356446145697, 383162462761132828801, 6439811511626359453675213, 5303461691719306943558046763201, 1498096661930372466988988205389128987297, 81072431194288773664131732218033347601750444502024167492384908896001
OFFSET
1,1
COMMENTS
Values of k are in A002959.
All terms are of the form 12*k + 1. - Altug Alkan, Sep 22 2018
LINKS
EXAMPLE
2*7^1 - 1 = 13, 2*7^2 - 1 = 97, and 2*7^4 - 1 = 4801 are primes, but 2*7^3 - 1 = 685 is not.
MATHEMATICA
Select[Table[2*7^n-1, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Jul 26 2012 *)
PROG
(Magma) [a: n in [0..100] | IsPrime(a) where a is 2*7^n-1 ]; // Vincenzo Librandi, Jul 26 2012
(PARI) for(k=1, 1e3, if(ispseudoprime(p=2*7^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018
CROSSREFS
Cf. A002959.
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Mar 27 2009
EXTENSIONS
a(7) corrected and examples edited by Jon E. Schoenfield, Jun 19 2010
STATUS
approved
Least k such that 2*n^k - 1 is prime.
+10
3
1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
OFFSET
2,4
COMMENTS
From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
From Eric Chen, Sep 16 2021: (Start)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
a(n) = 2 if and only if n is in A066049 but not in A006254.
a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)
FORMULA
From Eric Chen, Sep 16 2021: (Start)
a(6*n) = A098873(n).
a(2^n) = A279095(n).
a(A006254(n)) = 1.
a(A066049(n)) <= 2.
a(A214289(n)) <= 3. (End)
MATHEMATICA
f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
PROG
(PARI) a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015
CROSSREFS
Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).
KEYWORD
nonn,hard
AUTHOR
Pierre CAMI, Jun 01 2006
EXTENSIONS
Corrected and extended by Ray Chandler, Jun 08 2006
STATUS
approved
Primes of the form 2*11^n-1.
+10
3
241, 428717761
OFFSET
1,1
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 241 is 181 in base 12.
The n<1000 that yield primes are 2, 8, 248. - T. D. Noe, Nov 16 2006
FORMULA
a(n) = n-th number such that 2*11^k-1 that is prime for some k.
a(n) = 2*11^A120378(n)-1. - R. J. Mathar, Mar 06 2010
EXAMPLE
a(1)=241 since 2*11^2-1=241 is the first prime.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*11^k-1; if isprime(n) then printf("%d, %d", k, n) fi od od;
MATHEMATICA
Select[2*11^Range[1000]-1, PrimeQ] (* T. D. Noe, Nov 16 2006 *)
KEYWORD
nonn,bref
AUTHOR
Walter Kehowski, Jun 28 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 16 2006
STATUS
approved
Primes of the form 2*5^k - 1.
+10
2
1249, 31249, 305175781249, 119209289550781249, 1862645149230957031249, 111022302462515654042363166809082031249, 25243548967072377773175314089049159349542605923488736152648925781249
OFFSET
1,1
COMMENTS
See comments for A057472. Examined in base 12, all n must be even and all primes must be 1-primes. For example, 1249 is 881 in base 12.
The next term has 125 digits. - Harvey P. Dale, Jan 26 2019
FORMULA
a(n) = 2*5^A120375(n) - 1 = 2*5^(2*A002958(n)) - 1. - Jianing Song, Sep 22 2018
EXAMPLE
a(1) = 4 since 2*5^4 - 1 = 1249 is the first prime.
MAPLE
for w to 1 do for k from 1 to 2000 do n:=2*5^k-1; if isprime(n) then printf("%d, %d", k, n) fi od od;
MATHEMATICA
Select[2*5^Range[100]-1, PrimeQ] (* Harvey P. Dale, Jan 26 2019 *)
PROG
(PARI) for(k=1, 1e3, if(ispseudoprime(p=2*5^k-1), print1(p, ", "))); \\ Altug Alkan, Sep 22 2018
CROSSREFS
Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), this sequence (b=5), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Cf. also A000043, A002958.
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jun 28 2006
STATUS
approved
Primes of the form 2*6^k - 1.
+10
1
11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
OFFSET
1,1
COMMENTS
Primes in A164559.
Companion sequence of A057472. There are 49 terms known in this sequence.
LINKS
FORMULA
a(n) = 2*6^A057472(n) - 1.
EXAMPLE
2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
MAPLE
A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]); # K. D. Bajpai, Nov 15 2019
MATHEMATICA
Select[Table[2*6^k-1, {k, 1600}], PrimeQ[#]&] (* K. D. Bajpai, Nov 15 2019 *)
PROG
(PARI) for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
(Magma) [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1]; // K. D. Bajpai, Nov 15 2019
CROSSREFS
Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), this sequence (b=6), A158795 (b=7), A055558 (b=10), A120377 (b=11).
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 22 2018
STATUS
approved

Search completed in 0.010 seconds