[go: up one dir, main page]

login
Search: a002822 -id:a002822
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes q such that 6*q-1 and 6*q+1 are twin primes. Proper subset of A002822.
+20
14
2, 3, 5, 7, 17, 23, 47, 103, 107, 137, 283, 313, 347, 373, 397, 443, 467, 577, 593, 653, 773, 787, 907, 1033, 1117, 1423, 1433, 1613, 1823, 2027, 2063, 2137, 2153, 2203, 2287, 2293, 2333, 2347, 2677, 2903, 3257, 3307, 3407, 3413, 3593, 3623, 3673, 3923
OFFSET
1,1
COMMENTS
Primes in A182521. Also all primes p for which A182481(p)=1. - Vladimir Shevelev, May 03 2012
Conjecture: a(n) ~ n*log(n)*log(n*log(n))*log(log(n)). - Carl R. White, Nov 16 2023
LINKS
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[6*p-1] && PrimeQ[6*p+1], AppendTo[lst, p]], {n, 100}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 16 2009 *)
PROG
(PARI) forprime(p=2, 9999, if(isprime(6*p+1) & isprime(6*p-1), print(p))) \\ David Radcliffe, Apr 02 2016
(Python) from sympy import *; print([p for p in primerange(2, 9999) if isprime(6*p-1) and isprime(6*p+1)]) # David Radcliffe, Apr 02 2016
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 20 2001
STATUS
approved
Numbers n such that N = (5n)^2 is a twin rank (cf. A002822: 6N +- 1 are twin primes).
+20
8
1, 2, 7, 12, 14, 15, 42, 48, 77, 86, 89, 99, 118, 131, 146, 161, 163, 167, 201, 208, 209, 246, 278, 286, 306, 334, 343, 370, 378, 384, 400, 404, 420, 422, 449, 462, 481, 483, 499, 509, 537, 551, 568, 587, 590, 609, 651, 652, 667, 684, 730, 755, 761, 806, 817, 825, 827, 848, 867, 870, 882, 916, 931, 980, 982, 992
OFFSET
1,2
COMMENTS
Dinculescu notes that if N = m^2 > 1 is a twin rank (i.e., in A002822), then m is always a multiple of 5, and if N = m^3 > 1, then m is a multiple of 7, cf. A326234. He asks whether there are other pairs (a, b) different from (5, 2) and (7, 3) such that all twin ranks m^b > 1 are of the form m = a*n. (Of course (5, 2) and (7, 3) imply that (5, 2k), (7, 3k) and (35, 6k) is such a pair for any k.) This sequence lists the n for (a, b) = (5, 2), see A326232 for the numbers m.
See A326233, A326234 for m^3 and A326235, A326236 for m^6.
LINKS
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
FORMULA
a(n) = A326232(n+1)/5.
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(150*n^2+(-1)^s)||return), [1..10^3])
CROSSREFS
Cf. A002822, A326232 ({1} U {5*a(n)}), A326233 (analog for m^3), A326234, A326235 (analog for m^6), A326230 (least twin rank n^k > 1 for given k).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers k such that N = k^2 is a twin rank (cf. A002822: 6N +- 1 are twin primes).
+20
8
1, 5, 10, 35, 60, 70, 75, 210, 240, 385, 430, 445, 495, 590, 655, 730, 805, 815, 835, 1005, 1040, 1045, 1230, 1390, 1430, 1530, 1670, 1715, 1850, 1890, 1920, 2000, 2020, 2100, 2110, 2245, 2310, 2405, 2415, 2495, 2545, 2685, 2755, 2840, 2935, 2950, 3045, 3255, 3260, 3335, 3420, 3650, 3775, 3805
OFFSET
1,2
COMMENTS
Dinculescu notes that when k^2 > 1 is a twin rank (i.e., in A002822), then k is always a multiple of 5, and if k^3 > 1 is a twin rank, it is divisible by 7. See A326231 for the terms > 1 divided by 5.
See A326234 and A326233 for k^3, A326236 and A326235 for k^6.
LINKS
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(6*n^2+(-1)^s)||return), [1..5000])
CROSSREFS
Cf. A002822, A326231 (a(n)/5, n>1), A326233, A326234 (analog for k^3), A326235, A326236 (analog for k^6), A326230 (least twin rank m^n for given n).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that N = n^3 is a twin rank (A002822: 6N +- 1 are twin primes).
+20
8
1, 28, 42, 168, 203, 287, 308, 518, 1043, 1057, 1512, 1603, 1638, 1680, 1757, 1988, 2905, 3367, 3927, 4018, 4928, 5033, 5145, 5257, 5292, 5432, 5733, 6762, 7182, 7210, 7798, 8715, 10213, 10318, 10668, 10745, 11088, 12243, 13552, 14245, 14588, 14707, 15155, 15323, 15687, 15722, 15757
OFFSET
1,2
COMMENTS
Dinculescu notes that when n^2 or n^3 is a twin rank > 1 (i.e., in A002822), then n is a multiple of 5, resp. 7. It is unknown whether there exist other pairs (a, b) different from (5, 2) and (7, 3) such that n^b => a | n. (Of course (5, 2k) and (7, 3k) and (35, 6k) is a solution for any k.) See A326233 for the terms > 1 divided by 7.
See A326232 and A326231 for the case n^2, A326236 and A326235 for n^6.
LINKS
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
FORMULA
a(n) = 7*A326233(n-1), n >= 2.
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(6*n^3+(-1)^s)||return), [1..10^5])
CROSSREFS
Cf. A002822, A326233 (a(n)/7, n>1), A326231, A326232 (analog for n^2), A326235, A326236 (analog for n^6), A326230 (least twin rank n^k > 1 for given k).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers k such that N = k^6 is a twin rank (cf. A002822: 6N +- 1 are twin primes).
+20
8
1, 1820, 2590, 4795, 5565, 8330, 8470, 10640, 10710, 15960, 16730, 19145, 24535, 26460, 34580, 37065, 41510, 42630, 43505, 48230, 59675, 69160, 84910, 90860, 99540, 103320, 112560, 114205, 117600, 127120, 129220, 131670, 143290, 152740, 161105, 164115, 170030, 175105, 181195, 185045
OFFSET
1,2
COMMENTS
Dinculescu notes that when N = m^2 (resp. m^3) > 1 is a twin rank (i.e., in A002822), then m is a multiple of 5 (resp. of 7), cf. A326232 and A326234. Thus, when N = m^6, then m is a multiple of 35. See A326235 for a(n)/35, n > 1.
See A326232 and A326231 for m^2, A326234 and A326233 for m^3.
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..10001 (3667 terms from A. Dinculescu).
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
FORMULA
a(n) = 35*A326235(n-1), n >= 2.
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(6*n^6+(-1)^s)||return), [1..10^5])
CROSSREFS
Cf. A002822, A326235 (a(n)/35, n>1), A326231, A326232 (analog for n^2), A326233, A326234 (analog for n^3), A326230 (least twin rank n^k for given k).
KEYWORD
nonn
AUTHOR
STATUS
approved
Least k > 1 such that k^n is a twin rank (cf. A002822: 6*k^n +- 1 are twin primes).
+20
7
2, 5, 28, 70, 2, 1820, 110, 1850, 2520, 220, 2023, 9415, 647, 2880, 2562, 3895, 2, 51240, 525, 3750, 147, 2350, 355, 4480, 2588, 3370, 38157, 1185, 1473, 12530, 4338, 1540, 1988, 535, 102, 22606, 13773, 18895, 16373, 2635, 20428, 76300, 23037, 29005, 11078
OFFSET
1,1
COMMENTS
Dinculescu observes that when k^2 > 1 is a twin rank (i.e., in A002822) then 5 | k (k is divisible by 5), and if k^3 is a twin rank, then 7 | k; cf. A326232 & A326234. It is unknown whether there are other pairs (a, b) such that a | n whenever n^b > 1 is a twin rank. (Of course 2 | b => 5 | a and 3 | b => 7 | a, so we aren't interested in pairs (a, b) which are consequence of this.)
LINKS
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
PROG
(PARI) a(n)=for(k=2, oo, ispseudoprime(6*k^n-1)&&ispseudoprime(6*k^n+1)&&return(k))
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that N = (7n)^3 is a twin rank (A002822: 6N +- 1 are twin primes).
+20
6
4, 6, 24, 29, 41, 44, 74, 149, 151, 216, 229, 234, 240, 251, 284, 415, 481, 561, 574, 704, 719, 735, 751, 756, 776, 819, 966, 1026, 1030, 1114, 1245, 1459, 1474, 1524, 1535, 1584, 1749, 1936, 2035, 2084, 2101, 2165, 2189, 2241, 2246, 2251, 2301, 2305, 2384, 2511, 2541, 2710, 2865, 2955, 2990
OFFSET
1,1
COMMENTS
Dinculescu notes that if m^3 > 1 is a twin rank (i.e., in A002822), then m is always a multiple of 7. (Indeed, 6m^3 + 1 == 0 (mod 7) if m == 1, 2 or 4 (mod 7), and 6m^3 - 1 == 0 (mod 7) for m == 3, 5 or 6 (mod 7).)
He asks whether there are other pairs (a, b) different from (5, 2) and (7, 3) such that all twin ranks m^b > 1 are of the form m = a*n. (Of course (5, 2) and (7, 3) imply that (5, 2k), (7, 3k) and (35, 6k) is also such a pair for any k >= 1.)
This sequence lists these m/7 for (a, b) = (7, 3), see A326234 for the numbers m.
See A326231, A326232 for m^2 and A326235, A326236 for m^6.
LINKS
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
FORMULA
a(n) = A326234(n+1)/7.
MAPLE
filter:= proc(n) local m;
m:= (7*n)^3;
isprime(6*m+1) and isprime(6*m-1)
end proc:
select(filter, [$1..3000]); # Robert Israel, Jun 17 2019
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(6*(7*n)^3+(-1)^s)||return), [1..10^4])
CROSSREFS
Cf. A002822, A326234 ({1} U 7*{a(n)}), A326231 (analog for n^2), A326232, A326235 (analog for n^6), A326236, A326230 (least twin rank n^k > 1 for given k).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers k such that N = (35k)^6 is a twin rank (A002822: 6N +- 1 are twin primes).
+20
6
52, 74, 137, 159, 238, 242, 304, 306, 456, 478, 547, 701, 756, 988, 1059, 1186, 1218, 1243, 1378, 1705, 1976, 2426, 2596, 2844, 2952, 3216, 3263, 3360, 3632, 3692, 3762, 4094, 4364, 4603, 4689, 4858, 5003, 5177, 5287, 5361, 5426, 5999, 6054, 6285, 6347, 6417, 6457, 6639, 6862, 7269, 7500
OFFSET
1,1
COMMENTS
Dinculescu notes that if N = m^2 > 1 is a twin rank (i.e., in A002822), then m is a multiple of 5, and if N = m^3 > 1, then m is a multiple of 7, cf. A326231 and A326233. Thus, when N = m^6, then m is a multiple of 35, and here we list these m/35.
See A326236 for the numbers m.
LINKS
A. Dinculescu and M. F. Hasler, Table of n, a(n) for n = 1..10000
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
FORMULA
a(n) = A326236(n+1)/35.
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(6*(35*n)^6+(-1)^s)||return), [1..10^4])
CROSSREFS
Cf. A002822, A326231 (analog for m^2), A326232, A326233 (analog for m^3), A326234, A326236 ({1} U {35*a(n)}), A326230 (least twin rank m^n for given n).
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(1..10^4) independently computed using Mathematica and PARI/GP, by A. D. and M. F. Hasler, Jun 19 2019
STATUS
approved
Numbers k such that k and k+3 are in A002822.
+20
2
2, 7, 30, 100, 107, 135, 172, 217, 322, 352, 452, 562, 590, 667, 707, 917, 940, 975, 1092, 1127, 1222, 1470, 1570, 1950, 2282, 2545, 2772, 2865, 2930, 3007, 3087, 3682, 3770, 3840, 3945, 4447, 4452, 4477, 5142, 5555, 5600, 5625, 5635, 6262, 6442, 7520, 8232
OFFSET
1,1
EXAMPLE
2 is a term because 2 and 5 are in A002822.
MAPLE
isA002822 := proc(n) isprime(6*n-1) and isprime(6*n+1) ; end proc:
isA173233 := proc(n) isA002822( n ) and isA002822(n+3 ) ; end proc:
for n from 1 to 3000 do if isA173233(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, May 02 2010
MATHEMATICA
SequencePosition[Table[If[AllTrue[6n+{1, -1}, PrimeQ], 1, 0], {n, 9000}], {1, _, _, 1}][[;; , 1]] (* Harvey P. Dale, Jul 05 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition and sequence corrected (667, 707, 1097 etc inserted) by R. J. Mathar, May 02 2010
More terms from Jinyuan Wang, May 15 2020
STATUS
approved
Numbers n such that 6n is in A002822 but n is not.
+20
2
63, 65, 88, 98, 102, 133, 157, 163, 185, 193, 198, 203, 208, 210, 233, 245, 250, 262, 310, 340, 380, 387, 413, 437, 457, 462, 473, 478, 483, 493, 507, 508, 515, 530, 585, 600, 627, 635, 640, 647, 658, 662, 677, 718, 742, 765, 772, 793, 795, 830, 847, 857
OFFSET
1,1
COMMENTS
To use Dinculescu's terminology (see links): non-ranks n such that 6n is a twin-rank.
LINKS
Jason Kimberley, Table of n, a(n) for n = 1..27455 (equivalently, a(n) < 10^6).
A. Dinculescu, On Some Infinite Series Related to the Twin Primes, The Open Mathematics Journal, 5 (2012), 8-14.
A. Dinculescu, The Twin Primes Seen from a Different Perspective, The British Journal of Mathematics & Computer Science, 3 (2013), Issue 4, 691-698.
EXAMPLE
Take n = 63; then 6n = 378 and 36n = 2268; now 379, 2267, and 2269 are prime, but 377 = 13 x 29.
MATHEMATICA
s = Select[Range@ 5184, PrimeQ[6 # - 1] && PrimeQ[6 # + 1] &]; Select[s, IntegerQ[#/6] && ! MemberQ[s, #/6] &]/6 (* Michael De Vlieger, Oct 13 2015, after N. J. A. Sloane at A002822 *)
PROG
(Magma) IsInA2822:=func<n|IsPrime(6*n-1)and IsPrime(6*n+1)>;
[n:n in[1..10^3]|not IsInA2822(n)and IsInA2822(6*n)];
CROSSREFS
Cf. A002822.
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Oct 13 2015
STATUS
approved

Search completed in 0.038 seconds