[go: up one dir, main page]

login
Search: a002078 -id:a002078
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of N-equivalence classes of self-dual threshold functions of exactly n variables.
(Formerly M3683 N1503)
+10
18
1, 0, 1, 4, 46, 1322, 112519, 32267168, 34153652752
OFFSET
1,4
REFERENCES
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 10.
S. Muroga and I. Toda, Lower bound on the number of threshold functions, IEEE Trans. Electron. Computers, 17 (1968), 805-806.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
FORMULA
A002080(n) = Sum_{k=1..n} a(k)*binomial(n,k). Also A000609(n-1) = Sum_{k=1..n} a(k)*binomial(n,k)*2^k. - Alastair D. King, Mar 17, 2023.
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
Better description from Alastair King, Mar 17, 2023.
STATUS
approved
Number of threshold functions of n or fewer variables.
(Formerly M1285 N0492)
+10
11
2, 4, 14, 104, 1882, 94572, 15028134, 8378070864, 17561539552946, 144130531453121108
OFFSET
0,1
COMMENTS
a(n) is also equal to the number of self-dual threshold functions of n+1 or fewer variables. - Alastair D. King, Mar 17, 2023.
REFERENCES
Sze-Tsen Hu, Threshold Logic, University of California Press, 1965 see page 57.
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 3.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
C. Stenson, Weighted voting, threshold functions, and zonotopes, in The Mathematics of Decisions, Elections, and Games, Volume 625 of Contemporary Mathematics Editors Karl-Dieter Crisman, Michael A. Jones, American Mathematical Society, 2014, ISBN 0821898663, 9780821898666
LINKS
Taylor Brysiewicz, Holger Eble, and Lukas Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021.
Nicolle Gruzling, Linear separability of the vertices of an n-dimensional hypercube, M.Sc Thesis, University of Northern British Columbia, 2006. [From W. Lan (wl(AT)fjrtvu.edu.cn), Jun 27 2010]
Samuel C. Gutekunst, Karola Mészáros, and T. Kyle Petersen, Root Cones and the Resonance Arrangement, arXiv:1903.06595 [math.CO], 2019.
Isaac K. Martin, Andrew G. Moore, John T. Daly, Jess J. Meyer, and Teresa M. Ranadive, Design of General Purpose Minimal-Auxiliary Ising Machines, arXiv:2310.16246 [math.OC], 2023. See p. 7.
Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martínez-Rubio, Vladimir Mikulik, and Ard A. Louis, Neural networks are a priori biased towards Boolean functions with low entropy, arXiv:1909.11522 [cs.LG], 2019.
Guido F. Montufar and Jason Morton, When Does a Mixture of Products Contain a Product of Mixtures?, arXiv preprint arXiv:1206.0387 [stat.ML], 2012-2014.
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
Muroga, Saburo, Iwao Toda, and Satoru Takasu, Theory of majority decision elements, Journal of the Franklin Institute 271.5 (1961): 376-418. [Annotated scans of pages 413 and 414 only]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
Stephen Wolfram, A New Kind Of Science. page 1102.
Wikipedia, Linear separability [From W. Lan (wl(AT)fjrtvu.edu.cn), Jun 27 2010]
R. O. Winder, Enumeration of seven-argument threshold functions, IEEE Trans. Electron. Computers, 14 (1965), 315-325.
FORMULA
a(n) = Sum_{k=0..n} A000615(k)*binomial(n,k) = Sum_{k=0..n} A002079(k)*binomial(n,k)*2^k. Also A002078(n) = (1/2^n)*Sum_{k=0..n} a(k)*binomial(n,k), a(n-1) = Sum_{k=1..n} A002077(k)*binomial(n,k)*2^k, and A002080(n) = (1/2^n)*Sum_{k=1..n} a(k)*binomial(n,k). - Alastair D. King, Mar 17, 2023.
CROSSREFS
KEYWORD
nonn,hard,core,nice,more
EXTENSIONS
a(9) from Minfeng Wang, Jun 27 2010
STATUS
approved
Number of N-equivalence classes of self-dual threshold functions of n or fewer variables.
(Formerly M1266 N0485)
+10
8
1, 2, 4, 12, 81, 1684, 122921, 33207256, 34448225389
OFFSET
1,2
REFERENCES
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971. [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
FORMULA
a(n) = Sum_{k=1..n} A002077(k)*binomial(n,k) = (1/2^n)*Sum_{k=1..n} A000609(k-1)*binomial(n,k). - Alastair D. King, Mar 17, 2023.
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
Better description and corrected value of a(7) from Alastair King (see link) - N. J. A. Sloane, Oct 24 2023
STATUS
approved
Number of N-equivalence classes of threshold functions of exactly n variables.
(Formerly M0122 N0049)
+10
7
2, 1, 2, 9, 96, 2690, 226360, 64646855, 68339572672
OFFSET
0,1
REFERENCES
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 8.
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Muroga, Saburo, Iwao Toda, and Satoru Takasu, Theory of majority decision elements, Journal of the Franklin Institute 271.5 (1961): 376-418. [Annotated scans of pages 413 and 414 only]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
FORMULA
A002078(n) = Sum_{k=0..n} a(k)*binomial(n,k). A000609(n) = Sum_{k=0..n} a(k)*binomial(n,k)*2^k. - Alastair D. King, Mar 17, 2023.
CROSSREFS
KEYWORD
nonn,more
EXTENSIONS
Better description from Alastair King, Mar 17, 2023.
STATUS
approved
NPN-equivalence classes of threshold functions of n or fewer variables.
(Formerly M0809 N0306)
+10
2
1, 2, 3, 6, 15, 63, 567, 14755, 1366318
OFFSET
0,2
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 19.
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Goto, Eiichi, and Hidetosi Takahasi, Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
S. Muroga, T. Tsuboi and C. R. Baugh, Enumeration of threshold functions of eight variables, IEEE Trans. Computers, 19 (1970), 818-825. [Annotated scanned copy]
CROSSREFS
KEYWORD
nonn,nice,more
AUTHOR
STATUS
approved
Number of equivalence classes of threshold functions under permutations of the variables.
+10
0
2, 4, 10, 34, 178, 1720, 590440
OFFSET
0,1
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971. [Background]
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Don Knuth, Aug 17 2005
STATUS
approved

Search completed in 0.011 seconds