[go: up one dir, main page]

login
Search: a001948 -id:a001948
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers that are the sum of 4 distinct squares: of form w^2 + x^2 + y^2 + z^2 with 0 <= w < x < y < z.
+10
5
14, 21, 26, 29, 30, 35, 38, 39, 41, 42, 45, 46, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 74, 75, 77, 78, 79, 81, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 116, 117
OFFSET
1,1
EXAMPLE
14 = 0^2 + 1^2 + 2^2 + 3^2.
MATHEMATICA
nn = 20; Select[Union[Flatten[Table[a^2 + b^2 + c^2 + d^2, {a, 0, nn}, {b, a + 1, nn}, {c, b + 1, nn}, {d, c + 1, nn}]]], # <= nn^2 &] (* T. D. Noe, Aug 17 2012 *)
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Integers of the form 8k+7 (A004771) that cannot be written as sum of four distinct squares.
+10
5
7, 15, 23, 31, 47, 55, 103
OFFSET
1,1
EXAMPLE
a(6) = 55 since 55 == 7 (mod 8) and all its representations as a sum of squares have duplicates, namely, 55=1^2+1^2+2^2+7^2, 55=1^2+2^2+5^2+5^2, 55=1^2+3^2+3^2+6^2.
KEYWORD
nonn,fini,full
AUTHOR
Walter Kehowski, Jun 08 2014
STATUS
approved

Search completed in 0.011 seconds