[go: up one dir, main page]

login
Search: a001685 -id:a001685
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of genealogical 1-2 rooted trees of height n.
+10
15
1, 2, 3, 5, 11, 41, 371, 13901, 5033531, 69782910161, 351229174914190691, 24509789089655802510792656021, 8608552999157278575508415639286249242844899051
OFFSET
1,2
COMMENTS
Let u(n), v(n) be defined by u(1) = v(1) = 1, u(n+1) = u(n) + v(n) and v(n+1) = u(n)*v(n) for n >= 1; then a(n) = u(n) and A064847(n) = v(n). - Benoit Cloitre, Apr 01 2002 [Edited by Petros Hadjicostas, May 11 2020]
Consider the mapping f(a/b) = (a + b)/(a*b). Taking a = 1 and b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 2/1, 3/2, 5/6, 11/30, ... The current sequence contains the numerators. - Amarnath Murthy, Mar 24 2003
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 19 2004
REFERENCES
D. Parisse, The Tower of Hanoi and the Stern-Brocot Array, Thesis, Munich, 1997.
FORMULA
Limit_{n -> infinity} a(n)^phi/A064847(n) = 1, where phi = (1 + sqrt(5))/2 is the golden ratio. - Benoit Cloitre, May 08 2002
Numerator of b(n), where b(n) = 1/numerator(b(n-1)) + 1/denominator(b(n-1)) for n >= 2 with b(1) = 1.
a(n+1) = a(n) + a(1)*a(2)*...*a(n-1) for n >= 2. Also a(n+1) = a(n) + a(n-1)*(a(n) - a(n-1)) for n >= 2. In both cases, we start with a(1) = 1 and a(2) = 2.
a(n) ~ c^(phi^n), where c = 1.22508584062304325811405322247537613534139348463831009881946422737141574647... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==2, a[n]==a[n-1]+a[n-2](a[n-1]-a[n-2])}, a[n], {n, 15}] (* Harvey P. Dale, Jul 27 2011 *)
Re[NestList[Re@#+(1+I Re@#)Im@#&, 1+I, 15]] (* Vladimir Reshetnikov, Jul 18 2016 *)
PROG
(PARI) a(n) = local(an); if(n<1, 0, an=vector(max(2, n)); an[1]=1; an[2]=2; for(k=3, n, an[k]=an[k-1] - an[k-2]^2 + an[k-1]*an[k-2]); an[n])
(Magma) I:=[1, 2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)*(Self(n-1)-Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Jul 19 2016
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Additional description from Andreas M. Hinz and Daniele Parisse
STATUS
approved
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = p(n) and A064183(n) = q(n).
+10
13
0, 1, 2, 3, 5, 13, 49, 529, 21121, 10369921, 213952189441, 2214253468601687041, 473721461635593679669210030081, 1048939288228833101089604217183056027094304481281
OFFSET
0,3
COMMENTS
Every nonzero term is relatively prime to all others (which proves that there are infinitely many primes). See A236394 for the primes that appear.
LINKS
Michael Somos and R. Haas, A linked pair of sequences implies the primes are infinite, Amer. Math. Monthly, 110(6) (2003), 539-540.
FORMULA
a(n) = (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)) for n >= 2.
a(n) ~ c^(phi^n), where c = 1.2364241784241086061606568429916822975882631646194967549068405592472125928485... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
Flatten[{0, 1, RecurrenceTable[{a[n]==(a[n-1]^2 + a[n-2]^2 - a[n-1]*a[n-2] * (1+a[n-2]))/(1-a[n-2]), a[2]==2, a[3]==3}, a, {n, 2, 15}]}] (* Vaclav Kotesovec, May 21 2015 *)
PROG
(PARI) {a(n) = local(v); if( n<3, max(0, n), v = [1, 1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[1] + v[2])}
(PARI) {a(n) = if( n<4, max(0, n), (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)))}
CROSSREFS
See A236394 for the primes that are produced.
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Oct 07 2001
STATUS
approved
Decimal expansion of Phi, the real root of the equation 1/x = (x-1)^2.
+10
10
1, 7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7
OFFSET
1,2
COMMENTS
The silver number (A060006) is equal to Phi*(Phi-1).
Also Phi*(Phi-1) = 1/(Phi-1). - Richard R. Forberg, Oct 08 2014
Equations to which this is a root can also be written as: x = sqrt(x + sqrt(x)); x^2 - x - sqrt(x) = 0; or this form where n = 1: x = n + 1/sqrt(x). When n = 2 then the root is 2.618033988... = A104457 = 1 + A001622 or 1 + "Golden Ratio" called phi. - Richard R. Forberg, Oct 08 2014
Also equals the largest root (negated) of the Mandelbrot polynomial P_2(z) = 1+z*(1+z)^2. - Jean-François Alcover, Apr 16 2015
Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). Conjectures: the limit L(r) of c(k+1)/c(k) as k -> oo exists, L(r) is discontinuous at 5/3 (cf. A279676), and the left limit of L(r) as r->5/3 is Phi. - Clark Kimberling, Jul 11 2017
From Wolfdieter Lang, Nov 07 2022: (Start)
This equals r + 2/3 where r is the real root of y^3 - (1/3)*y - 25/27.
The other roots of x^3 - 2*x^2 + x - 1 are (2 + w1*((25 + 3*sqrt(69))/2)^(1/3) + w2*((25 - 3*sqrt(69))/2)^(1/3))/3 = 0.1225611668... + 0.7448617668...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (2 - cosh((1/3)*arccosh(25/2)) + sqrt(3)*sinh((1/3)*arccosh(25/2))*i)/3, and its complex conjugate. (End)
REFERENCES
M. Gardner, A Gardner's Workout, pp. 124-126, A. K. Peters MA 2001.
LINKS
Simon Baker, On small bases which admit countably many expansions, Journal of Number Theory, Volume 147, February 2015, Pages 515-532.
Simon Plouffe, Plouffe's Inverter .
Nikita Sidorov, Expansions in non-integer bases: Lower, middle and top orders, Journal of Number Theory, Volume 129, Issue 4, April 2009, Pages 741-754. See Prop. 2.3 p. 744.
Yuru Zou and Derong Kong, On a problem of countable expansions, Journal of Number Theory, Volume 158, January 2016, Pages 134-150. See Theorem 1.1 p. 135.
FORMULA
Equals 1+A075778. - R. J. Mathar, Aug 20 2008
Equals (1/6*(108+12*sqrt(69))^(1/3) + 2/(108+12*sqrt(69))^(1/3))^2. - Vaclav Kotesovec, Oct 08 2014
Equals Rho^2 where Rho is the plastic number 1.3247179572...(see A060006). - Philippe Deléham, Sep 29 2020
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 + 3*sqrt(69))/2)^(-1/3))/3.
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 - 3*sqrt(69))/2)^(1/3))/3.
Equals 2*(1 + cosh((1/3)*arccosh(25/2)))/3. (End)
EXAMPLE
1.75487766624669276004950889635852869189460661777279314398928397064...
MATHEMATICA
FindRoot[x^3 - 2x^2 + x - 1 == 0, {x, 1.75}, WorkingPrecision -> 128][[1, 2]] (* Robert G. Wilson v, Aug 19 2005 *)
Root[x^3-2x^2+x-1, x, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) d=104; default(realprecision, d); print(k=solve(x=1, 2, (x-1)^2-1/x)); for(c=0, d, z=floor(k); print1(z, ", ", ); k=10*(k-z))
(PARI) polrootsreal(x^3-2*x^2+x-1)[1] \\ Charles R Greathouse IV, Aug 15 2014
KEYWORD
cons,nonn
AUTHOR
Lekraj Beedassy, Aug 17 2005
EXTENSIONS
Extended by Klaus Brockhaus and Robert G. Wilson v, Aug 19 2005
STATUS
approved
An infinite coprime sequence defined by recursion.
(Formerly M2683 N1073)
+10
5
3, 7, 23, 47, 1103, 2207, 2435423, 4870847, 11862575248703, 23725150497407, 281441383062305809756861823, 562882766124611619513723647, 158418504200047111075388369241884118003210485743490303
OFFSET
0,1
COMMENTS
Every term is relatively prime to all others.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422.
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422. [Annotated scanned copy]
FORMULA
a(2n+1) = 2*a(2n)+1, a(2n) = (a(2n-1)^2-3)/2, with a(0)=3.
MATHEMATICA
a[n_?OddQ] := a[n] = 2*a[n-1] + 1; a[n_?EvenQ] := a[n] = (a[n-1]^2 - 3)/2; a[0] = 3; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 25 2013 *)
PROG
(PARI) a(n)=if(n<1, 3*(n==0), if(n%2, 2*a(n-1)+1, (a(n-1)^2-3)/2))
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Jeffrey Shallit
Edited by Michael Somos, Feb 01 2004
STATUS
approved
From a continued fraction.
(Formerly M1693 N0669)
+10
2
1, 1, 1, 1, 2, 6, 30, 390, 32370, 81022110, 79098077953830, 2499603048957386233742790, 6399996109983215106481566902449146981585570, 1296147136591533261616288032775924136752630487513536584267056282299509616710
OFFSET
0,5
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. C. Harris, Another proof of the infinitude of primes, Amer. Math. Monthly, 63 (1956), 711.
FORMULA
a(0) = a(1) = a(2) = 1, a(n) = Product_{k=0..n-3} A001685(k) for n >= 3. - Sean A. Irvine, Nov 13 2012
KEYWORD
nonn
EXTENSIONS
One more term from Sean A. Irvine, Nov 13 2012
STATUS
approved
An infinite coprime sequence defined by recursion.
(Formerly M2488 N0986)
+10
2
3, 5, 13, 17, 241, 257, 65281, 65537, 4294901761, 4294967297, 18446744069414584321, 18446744073709551617, 340282366920938463444927863358058659841
OFFSET
0,1
COMMENTS
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422.
A. W. F. Edwards, Infinite coprime sequences, Math. Gaz., 48 (1964), 416-422. [Annotated scanned copy]
FORMULA
a(2*n + 1) = a(2*n) + a(2*n - 1) - 1, a(2*n) = a(2*n - 1)^2 - 3 * a(2*n - 1) + 3, a(0) = 3, a(1) = 5. - Michael Somos, Feb 01 2004
Conjecture: a(2n+1)=A001146(n+1)+1. - R. J. Mathar, May 15 2007
a(2*n) = A220294(n). a(2*n + 1) = A000215(n+1). - Michael Somos, Dec 10 2012
MATHEMATICA
a[0] = 3; a[1] = 5;
a[n_] := a[n] = If[OddQ[n], a[n-1] + a[n-2] - 1, a[n-1]^2 - 3*a[n-1] + 3];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 16 2018, after _Michel Somos_ *)
PROG
(PARI) {a(n) = if( n<2, 3 * (n>=0) + 2 * (n>0), if( n%2, a(n-1) + a(n-2) - 1, a(n-1)^2 - 3 * a(n-1) + 3))} /* Michael Somos, Feb 01 2004 */
KEYWORD
nonn
EXTENSIONS
More terms from Jeffrey Shallit
Edited by Michael Somos, Feb 01 2004
STATUS
approved
a(2n)=2*a(2n-2)^2-1, a(2n+1)=2*a(2n)-1, a(0)=2.
(Formerly M0838)
+10
2
2, 3, 7, 13, 97, 193, 18817, 37633, 708158977, 1416317953, 1002978273411373057, 2005956546822746113, 2011930833870518011412817828051050497, 4023861667741036022825635656102100993
OFFSET
0,1
COMMENTS
An infinite coprime sequence defined by recursion.
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(2n) = A001075(2^n).
MATHEMATICA
nxt[{n_, a_, b_}]:=If[OddQ[n], {n+1, b, 2a^2-1}, {n+1, b, 2b-1}]; Transpose[ NestList[ nxt, {1, 2, 3}, 15]][[2]] (* Harvey P. Dale, Jun 22 2015 *)
PROG
(PARI) a(n)=if(n<1, 2*(n==0), if(n%2, 2*a(n-1)-1, 2*a(n-2)^2-1))
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved
Numerator of sequence defined by recursion c(n) = 1 + c(n-2) / c(n-1), c(0) = 0, c(1) = 1.
+10
1
0, 1, 1, 2, 3, 7, 23, 167, 3925, 661271, 2609039723, 1728952269242533, 4516579101127820242349159, 7812958861560974806259705508894834509747, 35298563436210937269618773778802420542715366288238091341051372773
OFFSET
0,4
COMMENTS
a(i) and a(j) are relative prime for all i>j>0.
An infinite coprime sequence defined by recursion.
FORMULA
a(n) = (2 * a(n - 1) * a(n - 2)^2 - a(n - 1)^2 * a(n - 4) - a(n - 2)^3 * a(n - 3)) / (a(n - 2) - a(n - 3) * a(n - 4)).
a(n) = b(n) + b(n-1) * a(n-2) where b(n) = A064184(n).
MATHEMATICA
nxt[{a_, b_}]:={b, 1+a/b}; NestList[nxt, {0, 1}, 20][[All, 1]]//Numerator (* Harvey P. Dale, Sep 26 2016 *)
PROG
(PARI) {a(n) = if( n<4, max(0, n) - (n>1), (2 * a(n-1) * a(n-2)^2 - a(n-1)^2 * a(n-4) - a(n-2)^3 * a(n-3)) / (a(n-2) - a(n-3) * a(n-4)))}
CROSSREFS
Cf. A001685, A002715, A003686, A006695, A064184 (denominators), A064526.
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 21 2001
STATUS
approved
Consider the mapping f(x/y) = (x+y)/(2xy) where x/y is a reduced fraction. Beginning with x_0 = 1 and y_0 = 2, repeated application of this mapping produces a sequence of fractions x_n/y_n; a(n) is the n-th numerator.
+10
1
1, 3, 7, 31, 367, 21199, 15311887, 648309901711, 19853227652502777487, 25742087295488761786102488482959, 1022127038655087543344600484892552190865956757100687
OFFSET
0,2
COMMENTS
An infinite coprime sequence defined by recursion.
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
Note that gcd(x+y,2*x*y) <= gcd(x+y,2)*gcd(x+y,x)*gcd(x+y,y), so gcd(x,y) = 1 implies gcd(x+y,2*x*y) = 1 unless both x,y are odd. As a result, the definition gives x_{n+1} = x_n+y_n and y_{n+1} = 2*(x_n)*(y_n) with x_0 = 1 and y_0 = 2. - Jianing Song, Oct 10 2021
FORMULA
From Jianing Song, Oct 10 2021: (Start)
a(n) = a(n-1) + A081476(n-1) for n >= 1 with a(0) = 1 and A081476(0) = 2.
a(0) = 1, a(n) = a(n-1) + 2^n*a(0)*a(1)*...*a(n-2) for n >= 1.
a(0) = 1, a(1) = 3, a(n) = a(n-1) + 2*a(n-2)*(a(n-1)-a(n-2)) for n >= 2. (End)
EXAMPLE
The n-th application of the mapping produces the fraction x_n/y_n from the fraction x_(n-1)/y_(n-1):
n=1: f(1/2) = (1+2)/(2*1*2) = 3/4 (so a(1)=3);
n=2: f(3/4) = (3+4)/(2*3*4) = 7/24 (so a(2)=7);
n=3: f(7/24) = (7+24)/(2*7*24) = 31/336 (so a(3)=31).
From Jianing Song, Oct 10 2021: (Start)
a(0) = 1;
a(1) = 1 + 2^1 = 3;
a(2) = 3 + 2^2*1 = 7;
a(3) = 7 + 2^3*1*3 = 31;
a(4) = 31 + 2^4*1*3*7 = 367;
a(5) = 367 + 2^5*1*3*7*31 = 21199. (End)
PROG
(PARI) a(n)=local(v); if(n<2, n>0, v=[1, 2]; for(k=2, n, v=[v[1]+v[2], 2*v[1]*v[2]]); v[1])
(PARI) lista(n) = my(v=vector(n+1)); v[1]=1; if(n>=1, v[2]=3); for(k=2, n, v[k+1] = v[k] + 2*v[k-1]*(v[k]-v[k-1])); v \\ Jianing Song, Oct 10 2021
CROSSREFS
The denominators are A081476.
KEYWORD
nonn,frac
AUTHOR
Amarnath Murthy, Mar 24 2003
EXTENSIONS
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
Edited by Jon E. Schoenfield, Apr 25 2014
STATUS
approved
From a continued fraction.
(Formerly M0893 N0338)
+10
0
1, 1, 2, 3, 8, 51, 1538, 599871, 19417825808, 1573273218577214751, 124442887685693556895657990772138, 311057821480221188367831306672353513246409033360367599771
OFFSET
0,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. C. Harris, Another proof of the infinitude of primes, Amer. Math. Monthly, 63 (1956), 711.
FORMULA
Denominator of continued fraction formed by terms of A001684. - Sean A. Irvine, Nov 13 2012
CROSSREFS
KEYWORD
nonn
EXTENSIONS
a(11) from Sean A. Irvine, Nov 13 2012
STATUS
approved

Search completed in 0.012 seconds