Displaying 1-10 of 10 results found.
page
1
Number of genealogical 1-2 rooted trees of height n.
+10
15
1, 2, 3, 5, 11, 41, 371, 13901, 5033531, 69782910161, 351229174914190691, 24509789089655802510792656021, 8608552999157278575508415639286249242844899051
COMMENTS
Let u(n), v(n) be defined by u(1) = v(1) = 1, u(n+1) = u(n) + v(n) and v(n+1) = u(n)*v(n) for n >= 1; then a(n) = u(n) and A064847(n) = v(n). - Benoit Cloitre, Apr 01 2002 [Edited by Petros Hadjicostas, May 11 2020]
Consider the mapping f(a/b) = (a + b)/(a*b). Taking a = 1 and b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 2/1, 3/2, 5/6, 11/30, ... The current sequence contains the numerators. - Amarnath Murthy, Mar 24 2003
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 19 2004
REFERENCES
D. Parisse, The Tower of Hanoi and the Stern-Brocot Array, Thesis, Munich, 1997.
FORMULA
Limit_{n -> infinity} a(n)^phi/ A064847(n) = 1, where phi = (1 + sqrt(5))/2 is the golden ratio. - Benoit Cloitre, May 08 2002
Numerator of b(n), where b(n) = 1/numerator(b(n-1)) + 1/denominator(b(n-1)) for n >= 2 with b(1) = 1.
a(n+1) = a(n) + a(1)*a(2)*...*a(n-1) for n >= 2. Also a(n+1) = a(n) + a(n-1)*(a(n) - a(n-1)) for n >= 2. In both cases, we start with a(1) = 1 and a(2) = 2.
a(n) ~ c^(phi^n), where c = 1.22508584062304325811405322247537613534139348463831009881946422737141574647... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==2, a[n]==a[n-1]+a[n-2](a[n-1]-a[n-2])}, a[n], {n, 15}] (* Harvey P. Dale, Jul 27 2011 *)
PROG
(PARI) a(n) = local(an); if(n<1, 0, an=vector(max(2, n)); an[1]=1; an[2]=2; for(k=3, n, an[k]=an[k-1] - an[k-2]^2 + an[k-1]*an[k-2]); an[n])
(Magma) I:=[1, 2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)*(Self(n-1)-Self(n-2)): n in [1..14]]; // Vincenzo Librandi, Jul 19 2016
Define a pair of sequences by p(0) = 0, q(0) = p(1) = q(1) = 1, q(n+1) = p(n)*q(n-1), p(n+1) = q(n+1) + q(n) for n > 0; then a(n) = p(n) and A064183(n) = q(n).
+10
13
0, 1, 2, 3, 5, 13, 49, 529, 21121, 10369921, 213952189441, 2214253468601687041, 473721461635593679669210030081, 1048939288228833101089604217183056027094304481281
COMMENTS
Every nonzero term is relatively prime to all others (which proves that there are infinitely many primes). See A236394 for the primes that appear.
FORMULA
a(n) = (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)) for n >= 2.
a(n) ~ c^(phi^n), where c = 1.2364241784241086061606568429916822975882631646194967549068405592472125928485... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015
MATHEMATICA
Flatten[{0, 1, RecurrenceTable[{a[n]==(a[n-1]^2 + a[n-2]^2 - a[n-1]*a[n-2] * (1+a[n-2]))/(1-a[n-2]), a[2]==2, a[3]==3}, a, {n, 2, 15}]}] (* Vaclav Kotesovec, May 21 2015 *)
PROG
(PARI) {a(n) = local(v); if( n<3, max(0, n), v = [1, 1]; for( k=3, n, v = [v[2], v[1] * (v[1] + v[2])]); v[1] + v[2])}
(PARI) {a(n) = if( n<4, max(0, n), (a(n-1)^2 + a(n-2)^2 - a(n-1) * a(n-2) * (1 + a(n-2))) / (1 - a(n-2)))}
CROSSREFS
See A236394 for the primes that are produced.
Decimal expansion of Phi, the real root of the equation 1/x = (x-1)^2.
+10
10
1, 7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7
COMMENTS
The silver number ( A060006) is equal to Phi*(Phi-1).
Equations to which this is a root can also be written as: x = sqrt(x + sqrt(x)); x^2 - x - sqrt(x) = 0; or this form where n = 1: x = n + 1/sqrt(x). When n = 2 then the root is 2.618033988... = A104457 = 1 + A001622 or 1 + "Golden Ratio" called phi. - Richard R. Forberg, Oct 08 2014
Also equals the largest root (negated) of the Mandelbrot polynomial P_2(z) = 1+z*(1+z)^2. - Jean-François Alcover, Apr 16 2015
Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). Conjectures: the limit L(r) of c(k+1)/c(k) as k -> oo exists, L(r) is discontinuous at 5/3 (cf. A279676), and the left limit of L(r) as r->5/3 is Phi. - Clark Kimberling, Jul 11 2017
This equals r + 2/3 where r is the real root of y^3 - (1/3)*y - 25/27.
The other roots of x^3 - 2*x^2 + x - 1 are (2 + w1*((25 + 3*sqrt(69))/2)^(1/3) + w2*((25 - 3*sqrt(69))/2)^(1/3))/3 = 0.1225611668... + 0.7448617668...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (2 - cosh((1/3)*arccosh(25/2)) + sqrt(3)*sinh((1/3)*arccosh(25/2))*i)/3, and its complex conjugate. (End)
REFERENCES
M. Gardner, A Gardner's Workout, pp. 124-126, A. K. Peters MA 2001.
FORMULA
Equals (1/6*(108+12*sqrt(69))^(1/3) + 2/(108+12*sqrt(69))^(1/3))^2. - Vaclav Kotesovec, Oct 08 2014
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 + 3*sqrt(69))/2)^(-1/3))/3.
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 - 3*sqrt(69))/2)^(1/3))/3.
Equals 2*(1 + cosh((1/3)*arccosh(25/2)))/3. (End)
EXAMPLE
1.75487766624669276004950889635852869189460661777279314398928397064...
MATHEMATICA
FindRoot[x^3 - 2x^2 + x - 1 == 0, {x, 1.75}, WorkingPrecision -> 128][[1, 2]] (* Robert G. Wilson v, Aug 19 2005 *)
PROG
(PARI) d=104; default(realprecision, d); print(k=solve(x=1, 2, (x-1)^2-1/x)); for(c=0, d, z=floor(k); print1(z, ", ", ); k=10*(k-z))
An infinite coprime sequence defined by recursion.
(Formerly M2683 N1073)
+10
5
3, 7, 23, 47, 1103, 2207, 2435423, 4870847, 11862575248703, 23725150497407, 281441383062305809756861823, 562882766124611619513723647, 158418504200047111075388369241884118003210485743490303
COMMENTS
Every term is relatively prime to all others.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(2n+1) = 2*a(2n)+1, a(2n) = (a(2n-1)^2-3)/2, with a(0)=3.
MATHEMATICA
a[n_?OddQ] := a[n] = 2*a[n-1] + 1; a[n_?EvenQ] := a[n] = (a[n-1]^2 - 3)/2; a[0] = 3; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 25 2013 *)
PROG
(PARI) a(n)=if(n<1, 3*(n==0), if(n%2, 2*a(n-1)+1, (a(n-1)^2-3)/2))
From a continued fraction.
(Formerly M1693 N0669)
+10
2
1, 1, 1, 1, 2, 6, 30, 390, 32370, 81022110, 79098077953830, 2499603048957386233742790, 6399996109983215106481566902449146981585570, 1296147136591533261616288032775924136752630487513536584267056282299509616710
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
An infinite coprime sequence defined by recursion.
(Formerly M2488 N0986)
+10
2
3, 5, 13, 17, 241, 257, 65281, 65537, 4294901761, 4294967297, 18446744069414584321, 18446744073709551617, 340282366920938463444927863358058659841
COMMENTS
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(2*n + 1) = a(2*n) + a(2*n - 1) - 1, a(2*n) = a(2*n - 1)^2 - 3 * a(2*n - 1) + 3, a(0) = 3, a(1) = 5. - Michael Somos, Feb 01 2004
MATHEMATICA
a[0] = 3; a[1] = 5;
a[n_] := a[n] = If[OddQ[n], a[n-1] + a[n-2] - 1, a[n-1]^2 - 3*a[n-1] + 3];
PROG
(PARI) {a(n) = if( n<2, 3 * (n>=0) + 2 * (n>0), if( n%2, a(n-1) + a(n-2) - 1, a(n-1)^2 - 3 * a(n-1) + 3))} /* Michael Somos, Feb 01 2004 */
a(2n)=2*a(2n-2)^2-1, a(2n+1)=2*a(2n)-1, a(0)=2.
(Formerly M0838)
+10
2
2, 3, 7, 13, 97, 193, 18817, 37633, 708158977, 1416317953, 1002978273411373057, 2005956546822746113, 2011930833870518011412817828051050497, 4023861667741036022825635656102100993
COMMENTS
An infinite coprime sequence defined by recursion.
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
nxt[{n_, a_, b_}]:=If[OddQ[n], {n+1, b, 2a^2-1}, {n+1, b, 2b-1}]; Transpose[ NestList[ nxt, {1, 2, 3}, 15]][[2]] (* Harvey P. Dale, Jun 22 2015 *)
PROG
(PARI) a(n)=if(n<1, 2*(n==0), if(n%2, 2*a(n-1)-1, 2*a(n-2)^2-1))
Numerator of sequence defined by recursion c(n) = 1 + c(n-2) / c(n-1), c(0) = 0, c(1) = 1.
+10
1
0, 1, 1, 2, 3, 7, 23, 167, 3925, 661271, 2609039723, 1728952269242533, 4516579101127820242349159, 7812958861560974806259705508894834509747, 35298563436210937269618773778802420542715366288238091341051372773
COMMENTS
a(i) and a(j) are relative prime for all i>j>0.
An infinite coprime sequence defined by recursion.
FORMULA
a(n) = (2 * a(n - 1) * a(n - 2)^2 - a(n - 1)^2 * a(n - 4) - a(n - 2)^3 * a(n - 3)) / (a(n - 2) - a(n - 3) * a(n - 4)).
a(n) = b(n) + b(n-1) * a(n-2) where b(n) = A064184(n).
MATHEMATICA
nxt[{a_, b_}]:={b, 1+a/b}; NestList[nxt, {0, 1}, 20][[All, 1]]//Numerator (* Harvey P. Dale, Sep 26 2016 *)
PROG
(PARI) {a(n) = if( n<4, max(0, n) - (n>1), (2 * a(n-1) * a(n-2)^2 - a(n-1)^2 * a(n-4) - a(n-2)^3 * a(n-3)) / (a(n-2) - a(n-3) * a(n-4)))}
Consider the mapping f(x/y) = (x+y)/(2xy) where x/y is a reduced fraction. Beginning with x_0 = 1 and y_0 = 2, repeated application of this mapping produces a sequence of fractions x_n/y_n; a(n) is the n-th numerator.
+10
1
1, 3, 7, 31, 367, 21199, 15311887, 648309901711, 19853227652502777487, 25742087295488761786102488482959, 1022127038655087543344600484892552190865956757100687
COMMENTS
An infinite coprime sequence defined by recursion.
Every term is relatively prime to all others. - Michael Somos, Feb 01 2004
Note that gcd(x+y,2*x*y) <= gcd(x+y,2)*gcd(x+y,x)*gcd(x+y,y), so gcd(x,y) = 1 implies gcd(x+y,2*x*y) = 1 unless both x,y are odd. As a result, the definition gives x_{n+1} = x_n+y_n and y_{n+1} = 2*(x_n)*(y_n) with x_0 = 1 and y_0 = 2. - Jianing Song, Oct 10 2021
FORMULA
a(n) = a(n-1) + A081476(n-1) for n >= 1 with a(0) = 1 and A081476(0) = 2.
a(0) = 1, a(n) = a(n-1) + 2^n*a(0)*a(1)*...*a(n-2) for n >= 1.
a(0) = 1, a(1) = 3, a(n) = a(n-1) + 2*a(n-2)*(a(n-1)-a(n-2)) for n >= 2. (End)
EXAMPLE
The n-th application of the mapping produces the fraction x_n/y_n from the fraction x_(n-1)/y_(n-1):
n=1: f(1/2) = (1+2)/(2*1*2) = 3/4 (so a(1)=3);
n=2: f(3/4) = (3+4)/(2*3*4) = 7/24 (so a(2)=7);
n=3: f(7/24) = (7+24)/(2*7*24) = 31/336 (so a(3)=31).
a(0) = 1;
a(1) = 1 + 2^1 = 3;
a(2) = 3 + 2^2*1 = 7;
a(3) = 7 + 2^3*1*3 = 31;
a(4) = 31 + 2^4*1*3*7 = 367;
a(5) = 367 + 2^5*1*3*7*31 = 21199. (End)
PROG
(PARI) a(n)=local(v); if(n<2, n>0, v=[1, 2]; for(k=2, n, v=[v[1]+v[2], 2*v[1]*v[2]]); v[1])
(PARI) lista(n) = my(v=vector(n+1)); v[1]=1; if(n>=1, v[2]=3); for(k=2, n, v[k+1] = v[k] + 2*v[k-1]*(v[k]-v[k-1])); v \\ Jianing Song, Oct 10 2021
EXTENSIONS
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
From a continued fraction.
(Formerly M0893 N0338)
+10
0
1, 1, 2, 3, 8, 51, 1538, 599871, 19417825808, 1573273218577214751, 124442887685693556895657990772138, 311057821480221188367831306672353513246409033360367599771
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Search completed in 0.012 seconds
|