[go: up one dir, main page]

login
Search: a001235 -id:a001235
     Sort: relevance | references | number | modified | created      Format: long | short | data
Taxi-cab numbers (A001235) that are the sum of two nonzero squares in more than one way.
+20
4
4624776, 15438250, 27445392, 36998208, 123506000, 127396178, 216226981, 219563136, 238328064, 269442621, 295985664, 310289733, 406767816, 423432360, 449519625, 510200217, 578097000, 590421637, 632767581, 634207392, 715674609, 751462677
COMMENTS
A001235(99) = 4624776 = 2^3*3^6*13*61 is the least number with this property.
A taxi-cab number (A001235) can be the sum of two nonzero squares in exactly one way. For example 22754277 is the least taxi-cab number that is the sum of two nonzero squares in exactly one way. 22754277 = 69^3 + 282^3 = 189^3 + 252^3 = 2646^2 + 3969^2. So 22754277 is not a member of this sequence. The next one is 8*22754277 = 182034216 = 138^3 + 564^3 = 378^3 + 504^3 = 2646^2 + 13230^2.
A taxi-cab number (A001235) can be of the form 2*n^2. For example 760032072 is the least number with this property. 760032072 = 114^3 + 912^3 = 513^3 + 855^3 = 2*19494^2. Note that 760032072 is a term of A081324. So it is not a term of this sequence.
CROSSREFS
Taxi-cab numbers (A001235) that are the product of exactly three (not necessarily distinct) primes.
+20
3
1729, 20683, 149389, 195841, 327763, 2418271, 6058747, 7620661, 9443761, 10765603, 13623913, 18406603, 32114143, 68007673, 105997327, 106243219, 166560193, 216226981, 446686147, 584504191, 813357253, 959281759, 1098597061, 1736913439, 2072769211, 2460483307
COMMENTS
Note that the sum of two positive cubes cannot be prime except 2, obviously. Additionally, if the sum of two positive cubes is a semiprime, then, all corresponding semiprimes have a unique representation as a sum of two distinct positive cubes (see comment section of A085366). Since we know that 1729 is the first member of A001235 and it has three prime divisors, the minimum value of the number of prime divisors of a taxi-cab number must be three. This was the motivation of the definition of this sequence.
CROSSREFS
Integers n where n^3 + (n+1)^3 is a Taxicab number A001235.
+20
2
9, 121, 235, 301, 1090, 1293, 1524, 3152, 8010, 15556, 15934, 19247, 20244, 21498, 24015, 25363, 25556, 45462, 57872, 63758, 80016, 93349, 94701, 101929, 113098, 119942, 132414, 143653, 167147, 186540, 192629, 229508, 246122, 247318, 292154, 307534, 322870
EXAMPLE
9^3 + 10^3 = 1729 = A001235(1), so 9 is in the sequence.
CROSSREFS
Taxicab numbers (A001235) whose 4th power is the sum of two positive cubes in a nontrivial way.
+20
2
10202696, 29791125, 48137544, 70957971, 81621568, 238329000, 275472792, 288975141, 385100352, 387352719, 553514689, 567663768, 652972544, 692612137, 728274456, 1051871977, 1104726168, 1275337000, 1299713688, 1402390152, 1484204904, 1906632000, 2203782336, 2311801128
FORMULA
A001235 INTERSECT A051387.
CROSSREFS
Position of n-th taxi-cab number A001235(n) in the sequence A003325 of sums of two positive cubes.
+20
1
61, 110, 248, 328, 445, 499, 510, 561, 697, 708, 1001, 1004, 1145, 1226, 1309, 1342, 1470, 1563, 1565, 1785, 2012, 2042, 2065, 2259, 2372, 2515, 2540, 2795, 2800, 2806, 2840, 2958, 3076, 3390, 3448, 3779, 3896, 4022, 4031, 4135, 4235, 4320, 4345, 4396, 4412
FORMULA
A001235(n) = A003325(a(n)).
EXAMPLE
First taxi-cab number A001235(1)=1729 is A003325(61) hence a(1)=61; 2nd taxi-cab number A001235(2)=4104 is A003325(110) hence a(2)=110.
CROSSREFS
Largest prime factor of n-th taxi-cab number A001235(n).
+20
1
19, 19, 19, 43, 19, 13, 43, 19, 37, 79, 19, 19, 79, 79, 43, 61, 79, 127, 19, 19, 13, 43, 109, 19, 37, 139, 43, 19, 37, 31, 79, 43, 19, 139, 127, 127, 13, 19, 19, 61, 103, 151, 409, 73, 181, 13, 277, 79, 43, 79, 79, 19, 43, 139, 61, 19, 61, 79, 103, 127, 19, 37, 79, 163, 79, 19, 19
COMMENTS
There are two versions of "taxicab numbers" that are A001235 and A011541. This sequence focuses on the version A001235.
FORMULA
a(n) = A006530(A001235(n)).
EXAMPLE
a(1) = A006530(A001235(1)) = A006530(1729) = 19.
MATHEMATICA
FactorInteger[Select[Range[2*10^5], Length[PowersRepresentations[#, 2, 3]] > 1 &]][[All, -1, 1]] (* Michael De Vlieger, May 10 2016, after Harvey P. Dale at A001235 *)
CROSSREFS
Numbers n such that (n-1)^3 + (n+1)^3 is a taxi-cab number (A001235).
+20
1
19, 32, 93, 124, 208, 243, 308, 395, 427, 471, 603, 672, 1057, 1568, 1892, 2181, 2223, 2587, 3040, 3049, 4037, 4336, 5232, 5556, 6196, 6305, 6643, 8288, 8748, 10161, 10185, 10612, 10985, 12352, 13741, 14807, 16021, 17568, 20352, 20653, 24080, 27216, 27867, 31113, 31869, 32032, 32500, 36593
COMMENTS
Numbers n such that 2*n*(n^2+3) is a member of A001235.
CROSSREFS
Taxi-cab numbers (A001235) that are the sum of three positive cubes.
+20
1
216027, 262656, 515375, 1092728, 1331064, 1533357, 1728216, 1845649, 2101248, 2515968, 2562112, 2622104, 2864288, 3511872, 3551112, 4033503, 4123000, 4511808, 4607064, 5004125, 5462424, 5832729, 6017193, 7091712, 7882245, 8491392, 8493039, 8494577, 8741824
COMMENTS
A001235(158) = 10702783 = 7*13*337*349 is the least squarefree term of this sequence.
CROSSREFS
a(n) = A001235(n) - floor(A001235(n)^(1/3))^3.
+20
1
1, 8, 8, 1000, 64, 8, 729, 27, 232, 1728, 64, 216, 1728, 512, 8000, 4913, 729, 27, 125, 512, 64, 5832, 13331, 216, 13580, 125, 4913, 1000, 1856, 3375, 13824, 7073, 343, 2547, 8, 1331, 12167, 512, 1728, 8000, 13824, 13768, 24389, 9736, 16496, 216, 12167, 13824, 19683, 1
FORMULA
a(n) = A055400(A001235(n)). - Michel Marcus, May 25 2016
CROSSREFS
Taxi-cab numbers (A001235) that are the average of two positive cubes in more than one way.
+20
1
6742008, 53936064, 182034216, 431488512, 842751000, 1456273728, 1581292125, 2312508744, 3451908096, 4914923832, 6742008000, 8973612648, 11395366632, 11650189824, 12650337000, 14812191576, 18500069952, 22754277000, 27615264768, 33123485304, 39319390656
CROSSREFS

Search completed in 0.047 seconds