Displaying 1-10 of 20 results found.
Numbers k such that k/ A008835(k) is cubeful ( A036966), where A008835(k) is the largest 4th power dividing k.
+20
3
8, 24, 27, 40, 54, 56, 72, 88, 104, 108, 120, 125, 128, 135, 136, 152, 168, 184, 189, 200, 216, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 360, 375, 376, 378, 384, 392, 408, 424, 432, 440, 456, 459, 472, 488, 500, 504, 513, 520, 536, 540
COMMENTS
Numbers such that at least one of the exponents in their prime factorization is of the form 4*m + 3.
The asymptotic density of this sequence is 1 - zeta(4)/zeta(3) = 0.0996073223... (Cohen, 1963).
The number of divisors of all the terms is divisible by 4.
EXAMPLE
8 is a term since 8 = 2^3 and 3 is of the form 4*m + 3.
MATHEMATICA
Select[Range[540], Max[Mod[FactorInteger[#][[;; , 2]], 4]] == 3 &]
Numbers k such that k/ A008835(k) is cubefree but not squarefree ( A067259), where A008835(k) is the largest 4th power dividing k.
+20
3
4, 9, 12, 18, 20, 25, 28, 36, 44, 45, 49, 50, 52, 60, 63, 64, 68, 75, 76, 84, 90, 92, 98, 99, 100, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 180, 188, 192, 196, 198, 204, 207, 212, 220, 225, 228, 234, 236, 242, 244
COMMENTS
Numbers such that at least one of the exponents in their prime factorization is of the form 4*m + 2, and none are of the form 4*m + 3.
The asymptotic density of this sequence is zeta(4) * (1/zeta(3) - 1/zeta(2)) = Pi^4/(90*zeta(3)) - Pi^2/15 = 0.2424190509... (Cohen, 1963).
EXAMPLE
4 is a term since the largest 4th power dividing 4 is 1, and 4/1 = 4 = 2^2 is cubefree but not squarefree.
64 is a term since the largest 4th power dividing 64 is 16, and 64/16 = 4 = 2^2 is cubefree but not squarefree.
MATHEMATICA
Select[Range[250], Max[Mod[FactorInteger[#][[;; , 2]], 4]] == 2 &]
Numbers k such that k/ A008835(k) is cubefree, where A008835(k) is the largest 4th power dividing k.
+20
2
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75
COMMENTS
Numbers such that none of the exponents in their prime factorization is of the form 4*m + 3.
Cohen (1963) proved that for a given number k > 2 the asymptotic density of numbers whose exponents in their prime factorization are not of the forms k*m - 1 is zeta(k)/zeta(k-1). In this sequence k = 4, and therefore its asymptotic density is zeta(4)/zeta(3) = Pi^4/(90*zeta(3)) = 0.9003926776...
EXAMPLE
6 is a term since 6 = 2^1 * 3^1 and 1 is not of the form 4*m + 3.
8 is not a term since 8 = 2^3 and 3 is of the form 4*m + 3.
MATHEMATICA
Select[Range[100], Max[Mod[FactorInteger[#][[;; , 2]], 4]] < 3 &]
Largest square dividing n.
+10
106
1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 16, 1
COMMENTS
The Dirichlet generating function of the arithmetic function of the largest t-th power dividing n is zeta(s)*zeta(t*s-t)/zeta(s*t), here with t=2 and in A008834 and A008835 with t=3 and t=4, respectively. - R. J. Mathar, Feb 19 2011
LINKS
Andrew Reiter, On (mod n) spirals, 2014, see also posting to Number Theory Mailing List, Mar 23 2014.
FORMULA
Dirichlet g.f.: zeta(s)*zeta(2s-2)/zeta(2s). - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ Zeta(3/2) * n^(3/2) / (3*Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
MAPLE
expand(numtheory:-nthpow(n, 2)) ;
end proc:
MATHEMATICA
a[n_] := First[ Select[ Reverse[ Divisors[n]], IntegerQ[Sqrt[#]]&, 1]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 12 2011 *)
f[p_, e_] := p^(2*Floor[e/2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jul 07 2020 *)
PROG
(Haskell)
a008833 n = head $ filter ((== 0) . (mod n)) $
reverse $ takeWhile (<= n) $ tail a000290_list
(Python)
from sympy.ntheory.factor_ import core
4th root of largest 4th power dividing n.
+10
23
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
COMMENTS
Multiplicative with a(p^e) = p^[e/4]. - Mitch Harris, Apr 19 2005
FORMULA
Multiplicative with a(p^e) = p^[e/4].
Dirichlet g.f.: zeta(4s-1)*zeta(s)/zeta(4s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ 90*zeta(3)*n/Pi^4 + 3*zeta(1/2)*sqrt(n)/Pi^2. - Vaclav Kotesovec, Dec 01 2020
G.f.: Sum_{k>=1} phi(k) * x^(k^4) / (1 - x^(k^4)). - Ilya Gutkovskiy, Aug 20 2021
EXAMPLE
a(32) = 2 since 2 = 16^(1/4) and 16 is the largest 4th power dividing 32.
MAPLE
A053164 := proc(n) local a, f, e, p ; for f in ifactors(n)[2] do e:= op(2, f) ; p := op(1, f) ; a := a*p^floor(e/4) ; end do ; a ; end proc: # R. J. Mathar, Jan 11 2012
MATHEMATICA
f[list_] := list[[1]]^Quotient[list[[2]], 4]; Table[Apply[Times, Map[f, FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
PROG
(Scheme, with memoization macro definec)
(define ( A002265 n) (floor->exact (/ n 4))) ;; For MIT/GNU Scheme
Cube root of largest cube dividing n.
+10
22
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
COMMENTS
This can be thought as a "lower 3rd root" of a positive integer. Upper k-th roots were studied by Broughan (2002, 2003, 2006). The sequence of "upper 3rd root" of positive integers is given by A019555. - Petros Hadjicostas, Sep 15 2019
FORMULA
Multiplicative with a(p^e) = p^[e/3]. - Mitch Harris, Apr 19 2005
Dirichlet g.f.: zeta(3s-1)*zeta(s)/zeta(3s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n / (6*zeta(3)) + 3*zeta(2/3) * n^(2/3) / Pi^2. - Vaclav Kotesovec, Jan 31 2019
G.f.: Sum_{k>=1} phi(k) * x^(k^3) / (1 - x^(k^3)). - Ilya Gutkovskiy, Aug 20 2021
MATHEMATICA
f[list_] := list[[1]]^Quotient[list[[2]], 3]; Table[Apply[Times, Map[f, FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
Table[SelectFirst[Reverse@ Divisors@ n, IntegerQ[#^(1/3)] &]^(1/3), {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
PROG
(PARI) A053150(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= (f[k, 1]^(f[k, 2]\3)); ); m; } \\ Antti Karttunen, Jul 28 2017
(PARI) a(n) = my(f = factor(n)); for (k=1, #f~, f[k, 2] = f[k, 2]\3); factorback(f); \\ Michel Marcus, Jul 28 2017
(Python 3.8+)
from math import prod
from sympy import factorint
def A053150(n): return prod(p**(q//3) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
Smallest positive integer for which n divides a(n)^4.
+10
15
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38
COMMENTS
According to Broughan (2002, 2003, 2006), a(n) is the "upper 4th root of n". The "lower 4th root of n" is sequence A053164. - Petros Hadjicostas, Sep 15 2019
FORMULA
If n is 5th-power-free (i.e., not 32, 64, 128, 243, ...) then a(n) = A007947(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(7)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.3528057925... . - Amiram Eldar, Oct 27 2022
MATHEMATICA
f[p_, e_] := p^Ceiling[e/4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
PROG
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, f[i, 2] = ceil(f[i, 2]/4)); factorback(f); \\ Michel Marcus, Jun 09 2014
4th-power-free part of n.
+10
13
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 72, 73
FORMULA
Dirichlet g.f.: zeta(4s)*zeta(s-1)/zeta(4s-4). The Dirichlet convolution of this sequence with A008835 is A000203. - R. J. Mathar, Apr 05 2011
(End)
Multiplicative with a(p^e) = p^(e mod 4). - Amiram Eldar, Sep 07 2020
MATHEMATICA
f[p_, e_] := p^Mod[e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
PROG
(Python)
from operator import mul
from functools import reduce
from sympy import factorint
return 1 if n <=1 else reduce(mul, [p**(e % 4) for p, e in factorint(n).items()])
CROSSREFS
A003961, A059897 are used to express relationship between terms of this sequence.
Smallest 4th power divisible by n.
+10
12
1, 16, 81, 16, 625, 1296, 2401, 16, 81, 10000, 14641, 1296, 28561, 38416, 50625, 16, 83521, 1296, 130321, 10000, 194481, 234256, 279841, 1296, 625, 456976, 81, 38416, 707281, 810000, 923521, 256, 1185921, 1336336, 1500625, 1296, 1874161, 2085136
FORMULA
Multiplicative with a(p^e) = p^(e + ((4-e) mod 4)).
Sum_{n>=1} 1/a(n) = Product_{p prime} ((p^4+3)/(p^4-1)) = 1.341459051107600424... . (End)
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(16)/(5*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1230279197... . - Amiram Eldar, Oct 27 2022
MATHEMATICA
f[p_, e_] := p^(e + Mod[4 - Mod[e, 4], 4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(f[i, 2] + (4-f[i, 2])%4)); } \\ Amiram Eldar, Oct 27 2022
Square part of 4th-power-free part of n.
+10
6
1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
COMMENTS
Equivalently, biquadratefree (4th-power-free) part of square part of n.
Multiplicative. The terms are squares of squarefree numbers ( A062503).
Every positive integer n is the product of a unique subset S_n of the terms of A050376 (sometimes called Fermi-Dirac primes). a(n) is the product of the members of S_n that are squares of prime numbers ( A001248).
FORMULA
a(p^e) = p^(2*floor(e/2) - 4*floor(e/4)). - Amiram Eldar, Jun 01 2020
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(4*s)/(zeta(2*s) * zeta(4*s-4)).
Sum_{k=1..n} a(k) ~ (4*zeta(3/2)*zeta(4))/(21*zeta(3)) * n^(3/2). (End)
EXAMPLE
Removing the 4th powers from 192 = 2^6 * 3^1 gives 2^(6 - 4) * 3^1 = 2^2 * 3 = 12. So the 4th-power-free part of 192 is 12. The square part of 12 (largest square dividing 12) is 4. So a(192) = 4.
MATHEMATICA
f[p_, e_] := p^(2*Floor[e/2] - 4*Floor[e/4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 01 2020 *)
PROG
(PARI) A053165(n)=my(f=factor(n)); f[, 2]=f[, 2]%4; factorback(f);
(Python)
from math import prod
from sympy import factorint
def A335324(n): return prod(p**(e&2) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 07 2024
CROSSREFS
The formula section details how the sequence maps the terms of A003961, A331590.
Search completed in 0.012 seconds
|