Displaying 11-20 of 27 results found.
Coordination sequence of 2-uniform tiling {3.4.6.4, 4.6.12} with respect to a point of type 4.6.12.
+10
37
1, 3, 6, 9, 11, 14, 17, 21, 25, 28, 30, 32, 35, 39, 43, 46, 48, 50, 53, 57, 61, 64, 66, 68, 71, 75, 79, 82, 84, 86, 89, 93, 97, 100, 102, 104, 107, 111, 115, 118, 120, 122, 125, 129, 133, 136, 138, 140, 143, 147, 151, 154, 156, 158, 161, 165, 169, 172, 174, 176
Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.
+10
35
1, 4, 8, 14, 18, 22, 28, 30, 38, 38, 48, 46, 58, 54, 68, 62, 78, 70, 88, 78, 98, 86, 108, 94, 118, 102, 128, 110, 138, 118, 148, 126, 158, 134, 168, 142, 178, 150, 188, 158, 198, 166, 208, 174, 218, 182, 228, 190, 238, 198, 248, 206, 258, 214, 268, 222, 278
Coordination sequence for planar net 3.12.12.
+10
34
1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Coordination sequence for the planar net 4.6.12.
+10
30
1, 3, 5, 7, 9, 12, 15, 17, 19, 21, 24, 27, 29, 31, 33, 36, 39, 41, 43, 45, 48, 51, 53, 55, 57, 60, 63, 65, 67, 69, 72, 75, 77, 79, 81, 84, 87, 89, 91, 93, 96, 99, 101, 103, 105, 108, 111, 113, 115, 117, 120, 123, 125, 127, 129, 132, 135, 137
Coordination sequence for G_2 lattice.
+10
25
1, 12, 30, 48, 66, 84, 102, 120, 138, 156, 174, 192, 210, 228, 246, 264, 282, 300, 318, 336, 354, 372, 390, 408, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 642, 660, 678, 696, 714, 732, 750, 768, 786, 804, 822, 840, 858, 876, 894, 912, 930, 948, 966, 984, 1002, 1020, 1038, 1056
Coordination sequence for the Cairo or dual-3.3.4.3.4 tiling with respect to a trivalent point.
+10
25
1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, 73, 76, 79, 84, 89, 92, 95, 100, 105, 108, 111, 116, 121, 124, 127, 132, 137, 140, 143, 148, 153, 156, 159, 164, 169, 172, 175, 180, 185, 188, 191, 196, 201, 204, 207, 212, 217, 220, 223, 228
Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6).
+10
7
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, 110, 130, 151, 175, 200, 226, 255, 285, 316, 350, 385, 421, 460, 500, 541, 585, 630, 676, 725, 775, 826, 880, 935, 991, 1050, 1110, 1171, 1235, 1300, 1366, 1435, 1505, 1576, 1650, 1725, 1801, 1880, 1960, 2041, 2125
Number of n-uniform tilings having n different arrangements of polygons about their vertices.
+10
4
11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Coordination sequence of point of type 3.3.4.3.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.
+10
4
1, 5, 8, 8, 11, 17, 25, 27, 24, 30, 38, 46, 47, 44, 46, 50, 64, 68, 65, 66, 70, 80, 80, 83, 87, 91, 100, 100, 99, 99, 109, 121, 121, 119, 119, 125, 133, 139, 140, 140, 145, 153, 155, 152, 158, 166, 174, 175, 172, 174, 178, 192, 196, 193, 194, 198, 208, 208, 211
Coordination sequence of point of type 3.3.12.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.
+10
4
1, 4, 7, 10, 15, 16, 21, 29, 28, 34, 33, 40, 48, 45, 53, 51, 59, 65, 64, 72, 68, 78, 83, 83, 89, 87, 97, 100, 102, 107, 106, 114, 119, 121, 124, 125, 132, 138, 138, 143, 144, 149, 157, 156, 162, 161, 168, 176, 173, 181, 179, 187, 193, 192, 200, 196, 206, 211, 211
Search completed in 0.031 seconds
|