[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a007505 -id:a007505
     Sort: relevance | references | number | modified | created      Format: long | short | data
A007505 in binary.
+20
0
10, 101, 1011, 10111, 101111, 10111111, 101111111, 1011111111111, 10111111111111111111, 101111111111111111111111111111111111, 1011111111111111111111111111111111111111
OFFSET
1,1
COMMENTS
Primes of the form 10, 101, 1011, 10111,..
FORMULA
EXAMPLE
a(12)=101111111111111111111111111111111111111111111.
MATHEMATICA
FromDigits/@Select[Table[PadRight[{1, 0}, n, 1], {n, 0, 50}], PrimeQ[ FromDigits[ #, 2]]&] (* Harvey P. Dale, Nov 12 2011 *)
KEYWORD
nonn,base
AUTHOR
STATUS
approved
a(n) = number of decimal digits of A007505(n).
+20
0
1, 1, 2, 2, 2, 3, 3, 4, 6, 11, 12, 14, 18, 20, 24, 29, 32, 44, 63, 66, 93, 99, 119, 139, 142, 250, 384, 987, 1267, 1546, 2276, 3817, 4486, 5457, 5666, 7734, 7966, 12532, 15470, 21610, 24183, 25795, 26543, 29220, 37217, 46941, 49667, 70671, 124880, 176102, 211335, 219060, 298833, 361552, 370947, 696203, 944108, 1274988, 1833429, 3457035, 3531640, 3580969
OFFSET
1,3
FORMULA
a(n) = A055642(A007505(n)). - Michel Marcus, Jul 23 2016
CROSSREFS
Cf. A055642, A007505 (primes of form 3*2^n-1), A002235 (numbers n such that 3*2^n-1 is prime).
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Jul 21 2016
STATUS
approved
a(0) = 1; for n > 0, a(n) = 3*2^(n-1) - 1.
+10
63
1, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943
OFFSET
0,2
COMMENTS
Apart from leading term (which should really be 3/2), same as A055010.
Binomial transform of A040001. Inverse binomial transform of A053156.
a(n) = A105728(n+1,2). - Reinhard Zumkeller, Apr 18 2005
Row sums of triangle A133567. - Gary W. Adamson, Sep 16 2007
Row sums of triangle A135226. - Gary W. Adamson, Nov 23 2007
a(n) = number of partitions Pi of [n+1] (in standard increasing form) such that the permutation Flatten[Pi] avoids the patterns 2-1-3 and 3-1-2. Example: a(3)=11 counts all 15 partitions of [4] except 13/24, 13/2/4 which contain a 2-1-3 and 14/23, 14/2/3 which contain a 3-1-2. Here "standard increasing form" means the entries are increasing in each block and the blocks are arranged in increasing order of their first entries. - David Callan, Jul 22 2008
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 42, 138, 162, 168, lead to this sequence. For the central square these vectors lead to the companion sequence A003945. - Johannes W. Meijer, Aug 15 2010
The binary representation of a(n) has n+1 digits, where all digits are 1's except digit n-1. For example: a(4) = 23 = 10111 (2). - Omar E. Pol, Dec 02 2012
Row sums of triangle A209561. - Reinhard Zumkeller, Dec 26 2012
If a Stern's sequence based enumeration system of positive irreducible fractions is considered (for example, A007305/A047679, A162909/A162910, A071766/A229742, A245325/A245326, ...), and if it is organized by blocks or levels (n) with 2^n terms (n >= 0), and the fractions, term by term, are summed at each level n, then the resulting sequence of integers is a(n) + 1/2, apart from leading term (which should be 1/2). - Yosu Yurramendi, May 23 2015
For n >= 2, A083329(n) in binary representation is a string [101..1], also 10 followed with (n-1) 1's. For n >= 3, A036563(n) in binary representation is a string [1..101], also (n-2) 1's followed with 01. Thus A083329(n) is a reflection of the binary representation of A036563(n+1). Example: A083329(5) = 101111 in binary, A036563(6) = 111101 in binary. - Ctibor O. Zizka, Nov 06 2018
LINKS
Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
Agustín Moreno Cañadas, Hernán Giraldo, Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
FORMULA
a(n) = (3*2^n - 2 + 0^n)/2.
G.f.: (1-x+x^2)/((1-x)*(1-2*x)).
E.g.f.: (3*exp(2*x) - 2*exp(x) + exp(0))/2.
a(0) = 1, a(n) = sum of all previous terms + n. - Amarnath Murthy, Jun 20 2004
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2, a(0)=1, a(1)=2, a(2)=5. - Philippe Deléham, Nov 29 2013
From Bob Selcoe, Apr 25 2014: (Start)
a(n) = (...((((((1)+1)*2+1)*2+1)*2+1)*2+1)...), with n+1 1's, n >= 0.
a(n) = 2*a(n-1) + 1, n >= 2.
a(n) = 2^n + 2^(n-1) - 1, n >= 2. (End)
a(n) = A086893(n) + A061547(n+1), n > 0. - Yosu Yurramendi, Jan 16 2017
EXAMPLE
a(0) = (3*2^0 - 2 + 0^0)/2 = 2/2 = 1 (use 0^0=1).
MAPLE
seq(ceil((2^i+2^(i+1)-2)/2), i=0..31); # Zerinvary Lajos, Oct 02 2007
MATHEMATICA
a[1] = 2; a[n_] := 2a[n - 1] + 1; Table[ a[n], {n, 31}] (* Robert G. Wilson v, May 04 2004 *)
Join[{1}, LinearRecurrence[{3, -2}, {2, 5}, 40]] (* Vincenzo Librandi, Jan 01 2016 *)
PROG
(Haskell)
a083329 n = a083329_list !! n
a083329_list = 1 : iterate ((+ 1) . (* 2)) 2
-- Reinhard Zumkeller, Dec 26 2012, Feb 22 2012
(PARI) a(n)=(3*2^n-2+0^n)/2 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [1] cat [3*2^(n-1)-1: n in [1..40]]; // Vincenzo Librandi, Jan 01 2016
CROSSREFS
Essentially the same as A055010 and A052940.
Cf. A007505 (primes).
Cf. A266550 (independence number of the n-Mycielski graph).
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 27 2003
EXTENSIONS
The generating function corrected by Martin Griffiths, Dec 01 2009
STATUS
approved
a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1.
+10
42
0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
OFFSET
0,2
COMMENTS
Apart from leading term (which should really be 3/2), same as A083329.
Written in binary, a(n) is 1011111...1.
The sequence 2, 5, 11, 23, 47, 95, ... apparently gives values of n such that Nim-factorial(n) = 2. Cf. A059970. However, compare A060152. More work is needed! - John W. Layman, Mar 09 2001
With offset 1, number of (132,3412)-avoiding two-stack sortable permutations.
Number of descents after n+1 iterations of morphism A007413.
a(n) = A164874(n,1), n>0; subsequence of A030130. - Reinhard Zumkeller, Aug 29 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,-1). - Milan Janjic, Jan 24 2010
a(n) is the total number of records over all length n binary words. A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters. That is, a_j>a_i for all i<j. - Geoffrey Critzer, Jul 18 2020
Called Thabit numbers after the Syrian mathematician Thābit ibn Qurra (826 or 836 - 901). - Amiram Eldar, Jun 08 2021
LINKS
Eric S. Egge and Toufik Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.
S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.
Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Number.
Wikipedia, Thabit number.
FORMULA
a(n) = A118654(n-1, 4), for n > 0.
a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2.
a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004
a(n) = A099258(A033484(n)-1) = floor(A033484(n)/2). - Reinhard Zumkeller, Oct 09 2004
G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011
a(n+1) = A196168(A000079(n)). - Reinhard Zumkeller, Oct 28 2011
E.g.f.: (3*exp(2*x) - 2*exp(x) - 1)/2. - Stefano Spezia, Sep 14 2024
EXAMPLE
a(3) = 3*2^2 - 1 = 3*4 - 1 = 11.
MATHEMATICA
Join[{0}, 3*2^Range[0, 34]-1] (* Harvey P. Dale, May 05 2013 *)
PROG
(Magma) [Floor(3*2^(n-1) - 1): n in [0..35]]; // Vincenzo Librandi, May 18 2011
(PARI) a(n)=3*2^n\2 - 1 \\ Charles R Greathouse IV, Apr 08 2016
(Sage) [0]+[3*2^(n-1)-1 for n in (1..35)] # G. C. Greubel, May 06 2019
(GAP) Concatenation([0], List([1..35], n-> 3*2^(n-1)-1)) # G. C. Greubel, May 06 2019
CROSSREFS
Cf. A007505 for primes in this sequence. Apart from initial term, same as A052940 and A083329.
Cf. A266550 (independence number of the n-Mycielski graph).
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, May 31 2000
STATUS
approved
Numbers m such that 3*2^m - 1 is prime.
(Formerly M0545 N0195)
+10
38
0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987, 234760
OFFSET
1,3
REFERENCES
H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..64
Mersenne Forum, 321 Search
H. Riesel, Lucasian criteria for the primality of N=h.2^n-1, Math. Comp., 23 (1969), 869-875.
H. Riesel, Lucasian criteria for the primality of N=h.2^n-1, Math. Comp., 23 (1969), 869-875. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Prime
Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Rule
MATHEMATICA
lst={}; Do[If[PrimeQ[3*2^n-1], Print[n]; AppendTo[lst, n]], {n, 10^5}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
PROG
(PARI) is(n)=ispseudoprime(3<<n - 1) \\ Charles R Greathouse IV, Aug 27 2014
KEYWORD
nonn,nice
EXTENSIONS
More terms from Eric W. Weisstein, Sep 29 2007
a(60) = 11484018 from The Prime Pages, from Pierre CAMI, Nov 25 2014
a(61)-a(62) from The Prime Pages, from Eric W. Weisstein, Nov 03 2015
Terms moved from Data to b-file, and more terms added to b-file, by Jeppe Stig Nielsen, Sep 07 2021
STATUS
approved
Integers m such that sigma(m) + sigma(2*m) = 6*m.
+10
4
10, 44, 184, 752, 12224, 49024, 12580864, 206158168064, 885443715520878608384, 226673591177468092350464, 232113757366000005450563584, 3894222643901120685369075227951104, 1020847100762815390371677078221595082752, 17126972312471518572699356075530215722269540352
OFFSET
1,1
COMMENTS
This is the case h = 2 of the h-perfect numbers as defined in the Harborth link.
LINKS
Heiko Harborth, On h-perfect numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 57-62.
FORMULA
a(n) = 2^A002235(n+1) * A007505(n+1). - Daniel Suteu, Feb 08 2017 [See Harborth link for a proof.]
EXAMPLE
10 is a term since sigma(10) + sigma(20) = 60, that is 6*10.
MATHEMATICA
Select[Range[10^7], DivisorSigma[1, #] + DivisorSigma[1, 2 #] == 6 # &] (* Michael De Vlieger, Feb 04 2017 *)
PROG
(PARI) isok(n, h=2) = sigma(n) + sigma(h*n) == 2*n*(h+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Feb 04 2017
EXTENSIONS
More terms from Jinyuan Wang, Feb 11 2020
STATUS
approved
Fixed points of A332221: Numbers k such that A156552(sigma(k)) is equal to k.
+10
3
2, 3, 5, 7, 11, 19, 23, 31, 47, 55, 79, 87, 127, 191, 383, 1279, 5119, 6143, 8191, 20479, 81919, 131071, 524287, 786431, 1310719, 2147483647
OFFSET
1,1
COMMENTS
Equally, numbers k such that sigma(k) is equal to A005940(1+k).
The primes in this sequence are obtained by subtracting 1 from those terms of A029747 that are one more than a prime.
Questions: Are there other composite terms than 55 and 87? Are there other even terms than 2? (All such even terms should also occur in A332218).
MATHEMATICA
Select[Range[10^5], DivisorSigma[1, #] == Block[{p = Partition[Split[Join[IntegerDigits[#, 2], {2}]], 2], q}, Times @@ Flatten[Table[q = Take[p, -i]; Prime[Count[Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}]]] &] (* Michael De Vlieger, Feb 12 2020, after Robert G. Wilson v at A005940 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Feb 10 2020
STATUS
approved
Prime numbers p such that p-1 or p+1 is a number of least prime signature (A025487).
+10
3
2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 47, 59, 61, 71, 73, 97, 127, 179, 181, 191, 193, 211, 239, 241, 257, 359, 383, 419, 421, 431, 433, 479, 577, 719, 769, 839, 863, 1151, 1153, 1259, 1297, 1439, 1801, 2161, 2309, 2311, 2521, 2591, 2593, 2879, 3359, 3361
OFFSET
1,1
COMMENTS
The corresponding numbers of least prime signature are A344385.
19 is the first prime not in this sequence.
This sequence unites many familiar sequences of primes, including Fermat primes (A019434), Mersenne primes (A000668), primorial primes (A018239 and A057705), factorial primes (A088054), A007505, and A039687.
Questions: 1) Is this sequence infinite? 2) Is log(a(n)) = O(log(n)^2)?
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..158 from Hal M. Switkay)
EXAMPLE
17 is a term because 17 - 1 = 16 is a number of least prime signature.
MATHEMATICA
{2}~Join~Select[Prime@ Range[2, 900], AnyTrue[# + {-1, 1}, Times @@ MapIndexed[Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater] ] == # &] &] (* Michael De Vlieger, May 16 2021 *)
KEYWORD
nonn
AUTHOR
Hal M. Switkay, May 16 2021
STATUS
approved
Solutions to n + 2*phi(n) = sigma(n) = n + 2*A000010(n) = A000203(n).
+10
2
10, 44, 184, 752, 3796, 12224, 49024, 12580864, 60610624, 1091389696, 2936313088, 46672718384, 58082557696, 78857645056, 118480915456, 206158168064, 292776422368, 346109272672, 393960181792
OFFSET
1,1
COMMENTS
Is the number of solutions finite? Do solutions to n+k*phi(n)=sigma(n) exist for all values of k? For k=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 the number of solutions I know below 1000000 is {1, 7, 2, 2, 1, 5, 3, 3, 0, 1, 1}). Not more for larger k.
If 3*2^n-1 is prime for n>0, then 2^n(3*2^n-1) belongs to the sequence; therefore this sequence is infinite if the sequence of primes of the form 3*2^n-1 (A007505) is infinite. - Matthew Vandermast, Jul 31 2004
3796=4.13.73 and 60610624=64.199.4759 do not belong to the class of numbers mentioned above by Vandermast.
a(20) > 10^12. - Donovan Johnson, Feb 29 2012
a(20) > 10^13. - Giovanni Resta, Apr 24 2016
EXAMPLE
n=44, phi(n)=20, sigma(44)=1+2+4+11+22+44=84=44+2*20
MATHEMATICA
ta={{0}}; k=2; Do[g=n; If[Equal[n+k*EulerPhi[n], DivisorSigma[1, n]], ta=Append[ta, n]; Print[n]], {n, 1, 182000000}]; {ta, g}
PROG
(PARI) is(n)=2*eulerphi(n)==sigma(n)-n \\ Charles R Greathouse IV, Feb 19 2013
CROSSREFS
A subsequence of A066679.
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 15 2002; more terms Aug 04 2004.
EXTENSIONS
a(10)-a(19) from Donovan Johnson, Feb 29 2012
STATUS
approved
Nonnegative numbers n such that 6*2^n-1 is prime.
+10
1
0, 1, 2, 3, 5, 6, 10, 17, 33, 37, 42, 54, 63, 75, 93, 102, 142, 205, 215, 305, 323, 390, 457, 469, 826, 1273, 3275, 4203, 5133, 7558, 12675, 14897, 18122, 18818, 25689, 26458, 41627, 51386, 71782, 80329, 85686, 88170, 97062
OFFSET
1,3
COMMENTS
The associated primes are in A007505.
FORMULA
a(n) = A002235(n+1)-1. - R. J. Mathar, Aug 17 2009
EXAMPLE
n=0 is in the sequence because 6*2^0-1=5 is prime. n=1 is in the sequence because 6*2^1-1=11 is prime.
PROG
(PARI) is(n)=ispseudoprime(6*2^n-1) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
Cf. A157341.
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Aug 15 2009
EXTENSIONS
Extended by R. J. Mathar, Aug 17 2009
a(28)-a(43) from Donovan Johnson, Jul 09 2010
STATUS
approved

Search completed in 0.013 seconds