[go: up one dir, main page]

login
Search: a006314 -id:a006314
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that k^(2^20) + 1 is prime (a generalized Fermat prime).
+0
21
1, 919444, 1059094, 1951734, 1963736
OFFSET
1,2
KEYWORD
nonn,hard,more
AUTHOR
Jeppe Stig Nielsen, Nov 04 2018
EXTENSIONS
a(4) from Jeppe Stig Nielsen, Aug 31 2022
a(5) from Jeppe Stig Nielsen, Oct 21 2022
STATUS
approved
Number of even numbers b with 0 < b < 2^n such that b^(2^n) + 1 is prime.
+0
0
0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 3, 4, 1
OFFSET
1,3
COMMENTS
The choice whether to take b < 2^n or b <= 2^n matters only for n=1 and n=2 unless there are more primes like 2^2+1 and 4^4+1 (see A121270).
Perfect squares b are allowed.
a(20) was determined after a lengthy computation by distributed project PrimeGrid, cf. A321323. - Jeppe Stig Nielsen, Jan 02 2019
EXAMPLE
For n=18, we get b^262144 + 1 is prime for b=24518, 40734, 145310, 361658, 525094, ...; the first 3 of these b values are strictly below 262144, hence a(18)=3.
The corresponding primes are 2^4+1; 2^8+1, 4^8+1; 2^16+1; 30^32+1; 120^128+1; 46^512+1; etc.
MATHEMATICA
Table[Count[Range[2, 2^n - 1, 2], b_ /; PrimeQ[b^(2^n) + 1]], {n, 9}] (* Michael De Vlieger, Nov 10 2016 *)
PROG
(PARI) a(n)=sum(k=1, 2^(n-1)-1, ispseudoprime((2*k)^2^n+1)) \\ slow, only probabilistic primality test
KEYWORD
nonn,hard,more
AUTHOR
Jeppe Stig Nielsen, Nov 06 2016
EXTENSIONS
a(20) from Jeppe Stig Nielsen, Jan 02 2019
STATUS
approved
Primes of the form n^16 + 1.
+0
1
2, 65537, 197352587024076973231046657, 808551180810136214718004658177, 1238846438084943599707227160577, 37157429083410091685945089785857, 123025056645280288014028950372089857, 150838912030874130174020868290707457
OFFSET
1,1
COMMENTS
Corresponding values of n are in A006313.
LINKS
MAPLE
A272137:=n->`if`(isprime(n^16+1), n^16+1, NULL): seq(A272137(n), n=1..200); # Wesley Ivan Hurt, May 11 2016
PROG
(Magma) [n^16 + 1: n in [1..700] | IsPrime(n^16 + 1)]
CROSSREFS
Cf. Sequences of numbers n such that n^(2^k)+1 is a prime p for k = 1-13: A005574 (k=1), A000068 (k=2), A006314 (k=3), A006313 (k=4), A006315 (k=5), A006316 (k=6), A056994 (k=7), A056995 (k=8), A057465 (k=9), A057002 (k=10), A088361 (k=11), A088362 (k=12), A226528 (k=13).
Corresponding sequences of primes p of the form n^(2^k)+1 for k = 1-4: A002496 (k=1), A037896 (k=2), A258805 (k=3), A272137 (k=4).
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 08 2016
STATUS
approved
Primes of the form n^8 + 1.
+0
2
2, 257, 65537, 37588592026706177, 92170395205042177, 147578905600000001, 284936905588473857, 3503536769037500417, 11007531417600000001, 11763130845074473217, 47330370277129322497, 50024641296100000001, 76872571987558646017, 416806419029812551937
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A060890(A006314(n)). - Michel Marcus, Jun 11 2015
MATHEMATICA
Select[Range[500]^8 + 1, PrimeQ]
PROG
(Magma) [a: n in [1..500] | IsPrime(a) where a is n^8+1];
(PARI) is(n)=ispower(n-1, 8) && isprime(n) \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Subsequence of A002496, A037896.
Cf. A006314 (associated n), A060890.
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 11 2015
STATUS
approved
Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.
+0
3
1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
OFFSET
0,9
COMMENTS
Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).
FORMULA
T(m, n) = Phi_m(n)
EXAMPLE
Read by antidiagonals:
m\n 0 1 2 3 4 5 6 7 8 9 10 11 12
------------------------------------------------------
0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 0 1 2 3 4 5 6 7 8 9 10 11
2 1 2 3 4 5 6 7 8 9 10 11 12 13
3 1 3 7 13 21 31 43 57 73 91 111 133 157
4 1 2 5 10 17 26 37 50 65 82 101 122 145
5 1 5 31 121 341 781 ... ... ... ... ... ... ...
6 1 1 3 7 13 21 31 43 57 73 91 111 133
etc.
The cyclotomic polynomials are:
n n-th cyclotomic polynomial
0 1
1 x-1
2 x+1
3 x^2+x+1
4 x^2+1
5 x^4+x^3+x^2+x+1
6 x^2-x+1
...
MATHEMATICA
Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
PROG
(PARI) t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
T(m, n) = if(m==0, 1, polcyclo(m, n))
a(n) = T(t1(n), t2(n))
CROSSREFS
Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).
KEYWORD
sign,easy,tabl,nice
AUTHOR
Eric Chen, Apr 22 2015
STATUS
approved
Numbers b such that b^131072 + 1 is prime.
+0
22
1, 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, 1955556, 2194180, 2280466, 2639850, 3450080, 3615210, 3814944, 4085818, 4329134, 4893072, 4974408, 5326454, 5400728, 5471814
OFFSET
1,2
COMMENTS
Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=17.
The first member exceeding 10^((10^6-1)/2^17) is known to be 42654182. - Jeppe Stig Nielsen, Jan 30 2016
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..515 (from a massive computation by PrimeGrid).
C. K. Caldwell, 1560730^131072+1, The Largest Known Primes
C. K. Caldwell, Search result %^131072+1.
J. S. S. Nielsen, Generalized Fermat Primes sorted by base (see table at the bottom of the page)
KEYWORD
nonn,hard
AUTHOR
Felix Fröhlich, Jan 17 2015
EXTENSIONS
Missing term a(8) inserted by Jeppe Stig Nielsen, Jul 02 2015
a(13) from Felix Fröhlich, Nov 01 2015
a(14)-a(20) from Jeppe Stig Nielsen, Jan 30 2016
a(21)-a(31) from Jeppe Stig Nielsen, Sep 06 2017
a(1) = 1 inserted by Jeppe Stig Nielsen, Sep 10 2018
STATUS
approved
Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.
+0
6
3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
OFFSET
1,1
LINKS
MATHEMATICA
a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
PROG
(PARI) {is(n)=isprime(polcyclo(21, n))};
for(n=1, 100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
STATUS
approved
Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.
+0
3
4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
OFFSET
1,1
LINKS
MATHEMATICA
Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
PROG
(PARI) isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
EXTENSIONS
More terms from Vincenzo Librandi, Jan 16 2015
STATUS
approved
Numbers n such that Phi_15(n) is prime, where Phi is the cyclotomic polynomial.
+0
3
2, 3, 11, 17, 23, 43, 46, 52, 53, 61, 62, 78, 84, 88, 89, 92, 99, 108, 123, 124, 141, 146, 154, 156, 158, 163, 170, 171, 182, 187, 202, 217, 219, 221, 229, 233, 238, 248, 249, 253, 264, 274, 275, 278, 283, 285, 287, 291, 296, 302, 309, 314, 315, 322, 325, 342, 346, 353, 356, 366, 368, 372, 377, 380, 384, 394, 404, 406, 411, 420, 425
OFFSET
1,1
LINKS
MATHEMATICA
Select[Range[600], PrimeQ[Cyclotomic[15, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
PROG
(PARI) isok(n) = isprime(polcyclo(15, n)); \\ Michel Marcus, Jan 16 2015
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
EXTENSIONS
More terms from Vincenzo Librandi, Jan 16 2015
STATUS
approved
Numbers b such that b^65536 + 1 is prime.
+0
23
1, 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, 2019300, 2041898, 2056292
OFFSET
1,2
COMMENTS
Base values b yielding a generalized Fermat prime b^(2^k) + 1 for k=16.
First square member of sequence is 3934049284 = (A253854(1))^2. - Jeppe Stig Nielsen, Jun 29 2015
LINKS
Ray Chandler, Table of n, a(n) for n = 1..1604 (2..70 from Felix Fröhlich, 71..425 from Jeppe Stig Nielsen)
J. S. S. Nielsen, Generalized Fermat Primes sorted by base (see table at the bottom of the page)
PrimeGrid, GFN Status by n-Range, Message 89145
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Dec 05 2014
EXTENSIONS
Corrected last term, and extended, by Jeppe Stig Nielsen, Jun 29 2015
New b-file, updated with data from Message 89145 at PrimeGrid forum uploaded and sequence data corrected, by Felix Fröhlich, Jan 03 2016
a(1) = 1 inserted and new b-file by Jeppe Stig Nielsen, Sep 10 2018
STATUS
approved

Search completed in 0.022 seconds