Displaying 1-10 of 41 results found.
a(n) = 4*a(n-1) + n with n > 1, a(1)=1.
+0
21
1, 6, 27, 112, 453, 1818, 7279, 29124, 116505, 466030, 1864131, 7456536, 29826157, 119304642, 477218583, 1908874348, 7635497409, 30541989654, 122167958635, 488671834560, 1954687338261, 7818749353066
FORMULA
a(n) = (4^(n+1) - 3*n - 4)/9.
G.f.: x/((1-4*x)*(1-x)^2).
a(n) = Sum_{k=0..n} (n-k)*4^k = Sum_{k=0..n} k*4^(n-k). - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+2)*3^k [Offset 0]. - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} Sum_{j=0..2k} (-1)^(j+1)*J(j)*J(2k-j), J(n) = A001045(n). - Paul Barry, Oct 23 2009
E.g.f.: (4*exp(4*x) - (4+3*x)*exp(x))/9. - G. C. Greubel, Feb 18 2020
EXAMPLE
G.f. = x + 6*x^2 + 27*x^3 + 112*x^4 + 453*x^5 + 1818*x^6 + 7279*x^7 + ...
MATHEMATICA
RecurrenceTable[{a[1]==1, a[n]==4a[n-1]+n}, a[n], {n, 30}] (* Harvey P. Dale, Oct 12 2011 *)
a[ n_]:= SeriesCoefficient[x/((1-4x)(1-x)^2), {x, 0, n}] (* Michael Somos, Jun 20 2012 *)
PROG
(PARI) {a(n) = polcoeff( x / ((1 - x)^2 * (1 - 4*x)) + x * O(x^n), n)} /* Michael Somos, Jun 20 2012 */
(Sage) [(4^(n+1) -3*n -4)/9 for n in (1..30)] # G. C. Greubel, Feb 18 2020
(Python)
At these values of k the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials all give prime numbers.
+0
3
1068630, 1441590, 1867950, 3429300, 4084230, 5651730, 6322890, 6770610, 7158630, 7804830, 9437760, 9624270, 13625850, 23194860, 25848840, 26588520, 28714950, 29451840, 32984430, 33650580, 36500910, 38177130, 42856590, 49531020, 50016540, 50222070, 52083330, 54637590
COMMENTS
Numbers k such that C1(k) = k-1, C2(k) = k+1, C3(k) = k^2+k+1, C4(k) = k^2+1 and C5(k) = k^4+k^3+k^2+k+1 are all primes.
EXAMPLE
For k = 1068630: the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials give a quintet of primes: {1068629, 1068631, 1141971145531, 1141970076901, 1304096876879617162402531}.
PROG
(PARI) is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1) && isprime(k^4+k^3+k^2+k+1) ; \\ Amiram Eldar, Sep 24 2024
CROSSREFS
Cf. A070155, A070156, A070157, A000068, A006313, A006314, A006315, A006316, A056993, A056994, A056995, A005574, A057465, A057002, A070020, A070025.
At these values of k, the 1st, 2nd, 3rd and 4th cyclotomic polynomials all give prime numbers.
+0
5
6, 150, 2730, 9000, 9240, 35280, 41760, 43050, 53280, 65520, 76650, 96180, 111030, 148200, 197370, 207480, 213360, 226380, 254280, 264600, 309480, 332160, 342450, 352740, 375450, 381990, 440550, 458790, 501030, 527070, 552030, 642360, 660810
COMMENTS
Numbers k such that k-1, k+1, k^2+k+1 and k^2+1 are all primes.
EXAMPLE
For k = 6: 5, 7, 43 and 37 are prime values of the first 4 cyclotomic polynomials.
MATHEMATICA
Select[Range[10^6], Function[k, AllTrue[Cyclotomic[#, k] & /@ Range@ 4, PrimeQ]]] (* Michael De Vlieger, Jul 18 2017 *)
PROG
(PARI) is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024
CROSSREFS
Cf. A070155, A070156, A070157, A000068, A006313, A006314, A006315, A006316, A056993, A056994, A056995, A005574, A057465, A057002, A070020, A070042.
At these values of k the first, 2nd and 3rd cyclotomic polynomials all give prime numbers.
+0
4
6, 12, 138, 150, 192, 348, 642, 1020, 1092, 1230, 1620, 1788, 1932, 2112, 2142, 2238, 2658, 2688, 2730, 3330, 3540, 3918, 4002, 4158, 5010, 5640, 6090, 6450, 6552, 6702, 7950, 8088, 9000, 9042, 9240, 9462, 9768, 10008, 10092, 10272, 10302, 10332
COMMENTS
Numbers k such that k-1, k+1 and k^2+k+1 are all primes.
EXAMPLE
For k = 6: 5, 7 and 43 are prime values of the first 3 cyclotomic polynomials.
MATHEMATICA
psQ[n_]:=And@@PrimeQ[{n-1, n+1, n^2+n+1}]; Select[Range[11000], psQ] (* Harvey P. Dale, Nov 05 2011 *)
Select[Range[10500], AllTrue[Cyclotomic[Range@ 3, #], PrimeQ] &] (* Michael De Vlieger, Dec 08 2018 *)
PROG
(PARI) is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024
CROSSREFS
Cf. A070155, A070156, A070157, A000068, A006313, A006314, A006315, A006316, A056993, A056994, A056995, A005574, A057465, A057002, A070025, A070042.
Numbers k such that k^524288 + 1 is prime.
+0
22
1, 75898, 341112, 356926, 475856, 1880370, 2061748, 2312092, 2733014, 2788032, 2877652, 2985036, 3214654, 3638450, 4896418, 5897794, 6339004
COMMENTS
Numbers k such that k^(2^j) + 1 is a generalized Fermat prime for j=19.
PrimeGrid has now tested and double checked the necessary candidates to prove that 1880370 is a(6). - Jeppe Stig Nielsen, Feb 20 2018
CROSSREFS
Cf. A056993, A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A321323.
Numbers k such that k^(2^13) + 1 is prime (a generalized Fermat prime).
+0
28
1, 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, 241860, 248744, 268032, 270674, 302368, 316970, 326260, 347962, 350830, 397468, 410938, 416010, 424584, 425848, 426338
CROSSREFS
Cf. A056993, A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226529, A226530, A251597, A253854, A244150, A243959, A321323.
Numbers k such that k^2 + 1 is prime.
(Formerly M1010)
+0
175
1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 184, 204, 206, 210, 224, 230, 236, 240, 250, 256, 260, 264, 270, 280, 284, 300, 306, 314, 326, 340, 350, 384, 386, 396
COMMENTS
Hardy and Littlewood conjectured that the asymptotic number of elements in this sequence not exceeding n is approximately c*sqrt(n)/log(n) for some constant c. - Stefan Steinerberger, Apr 06 2006
Apparently Goldbach conjectured that any a > 1 from this sequence can be written as a=b+c where b and c are in this sequence (Lemmermeyer link below). - Jeppe Stig Nielsen, Oct 14 2015
No term > 2 can be both in this sequence and in A001105 because of the Aurifeuillean factorization (2*k^2)^2 + 1 = (2*k^2 - 2*k + 1) * (2*k^2 + 2*k + 1). - Jeppe Stig Nielsen, Aug 04 2019
REFERENCES
Harvey Dubner, "Generalized Fermat primes", J. Recreational Math., 18 (1985): 279-280.
R. K. Guy, "Unsolved Problems in Number Theory", 3rd edition, A2.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 15, Thm. 17.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Eric Weisstein's World of Mathematics, Power.
MATHEMATICA
Join[{1}, 2Flatten[Position[PrimeQ[Table[x^2+1, {x, 2, 1000, 2}]], True]]] (* Fred Patrick Doty, Aug 18 2017 *)
PROG
(PARI) for(n=1, 1e3, if(isprime(n^2 + 1), print1(n, ", "))) \\ Altug Alkan, Oct 14 2015
(Haskell)
a005574 n = a005574_list !! (n-1)
a005574_list = filter ((== 1) . a010051' . (+ 1) . (^ 2)) [0..]
CROSSREFS
Cf. A002522, A001912, A002496, A062325, A090693, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A243959, A321323.
Other sequences of the type "Numbers k such that k^2 + i is prime": this sequence (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).
a(n) is the smallest k >= 2 such that k^(2^n)+1 is prime, or -1 if no such k exists.
+0
36
2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444
COMMENTS
Smallest base value yielding generalized Fermat primes. - Hugo Pfoertner, Jul 01 2003
The first 5 terms correspond with the known (ordinary) Fermat primes. A probable candidate for the next entry is 62722^131072+1, discovered by Michael Angel in 2003. It has 628808 decimal digits. - Hugo Pfoertner, Jul 01 2003
For any n, a(n+1) >= sqrt(a(n)), because k^(2^(n+1))+1 = (k^2)^(2^n)+1. - Jeppe Stig Nielsen, Sep 16 2015
Does the sequence contain any perfect squares? If a(n) is a perfect square, then a(n+1) = sqrt(a(n)). - Jeppe Stig Nielsen, Sep 16 2015
If for a particular n, a(n) exists, then a(i) exist for all i=0,1,2,...,n. No proof is known that this sequence is infinite. Such a result would clearly imply the infinitude of A002496. - Jeppe Stig Nielsen, Sep 18 2015
919444 is a candidate for a(20). See Zimmermann link. - Serge Batalov, Sep 02 2017
Now PrimeGrid has tested and double checked all b^(2^20) + 1 with b < 919444, so we have proof that a(20) = 919444. - Jeppe Stig Nielsen, Dec 30 2017
EXAMPLE
The primes are 2^(2^0) + 1 = 3, 2^(2^1) + 1 = 5, 2^(2^2) + 1 = 17, 2^(2^3) + 1 = 257, 2^(2^4) + 1 = 65537, 30^(2^5) + 1, 102^(2^6) + 1, ....
MATHEMATICA
f[n_] := (p = 2^n; k = 2; While[cp = k^p + 1; !PrimeQ@cp, k++ ]; k); Do[ Print[{n, f@n}], {n, 0, 17}] (* Lei Zhou, Feb 21 2005 *)
PROG
(PARI) a(n)=my(k=2); while(!isprime(k^(2^n)+1), k++); k \\ Anders Hellström, Sep 16 2015
CROSSREFS
Cf. A006093, A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A243959, A321323.
EXTENSIONS
24518 and 75898 from Lei Zhou, Feb 01 2012
Numbers b such that b^262144+1 is prime.
+0
23
1, 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, 3547726, 3596074, 3673932, 3853792, 3933508, 4246258, 4489246, 5152128, 5205422, 5828034, 6287774, 6291332, 8521794
COMMENTS
Base values b yielding a generalized Fermat prime b^(2^k)+1 for k=18.
CROSSREFS
Cf. A056993, A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A243959, A321323.
EXTENSIONS
a(9), announced in message 92163 in PrimeGrid forum, added by Felix Fröhlich, Feb 17 2016
a(10), a(11) sent by Maximilian Pacher, Jun 27 2016, and a(12) on Aug 24 2016. - N. J. A. Sloane
Numbers b such that b^65536 + 1 is prime.
+0
23
1, 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, 2019300, 2041898, 2056292
COMMENTS
Base values b yielding a generalized Fermat prime b^(2^k) + 1 for k=16.
CROSSREFS
Cf. A056993, A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A253854, A244150, A243959, A321323.
EXTENSIONS
New b-file, updated with data from Message 89145 at PrimeGrid forum uploaded and sequence data corrected, by Felix Fröhlich, Jan 03 2016
Search completed in 0.022 seconds
|