[go: up one dir, main page]

login
Search: a006084 -id:a006084
     Sort: relevance | references | number | modified | created      Format: long | short | data
Continued fraction for e.
(Formerly M0088)
+10
37
2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34, 1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42, 1, 1, 44, 1, 1, 46, 1, 1, 48, 1, 1, 50, 1, 1, 52, 1, 1, 54, 1, 1, 56, 1, 1, 58, 1, 1, 60, 1, 1, 62, 1, 1, 64, 1, 1, 66
OFFSET
0,1
COMMENTS
This is also the Engel expansion for 3*exp(1/2)/2 - 1/2. - Gerald McGarvey, Aug 07 2004
Sorted with duplicate terms dropped, this is A004277, 1 together with the positive even numbers. - Alonso del Arte, Jan 27 2012
From Peter Bala, Nov 26 2019: (Start)
Related continued fractions expansions:
2*e = [5; 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, ..., 1, 3, 2*n, 3, 1, 2*n, ...].
(1/2)*e = [1; 2, 1, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 5, 3, 1, 5, 1, 3, 7, 3, 1, 7, ..., 1, 3, 2*n + 1, 3, 1, 2*n + 1, ...].
4*e = [10, 1, 6, 1, 7, 2, 7, 2, 7, 1, 1, 1, 7, 3, 7, 1, 2, 1, 7, 4, 7, 1, 3, 1, 7, 5, 7, 1, 4, ..., 1, 7, n+1, 7, 1, n, ...].
(1/4)*e = [0, 1, 2, 8, 3, 1, 1, 1, 1, 7, 1, 1, 2, 1, 1, 1, 2, 7, 1, 2, 2, 1, 1, 1, 3, 7, 1, 3, 2, 1, 1, 1, 4, 7, 1, 4, 2, ..., 1, 1, 1, n, 7, 1, n, 2, ...]. (End)
REFERENCES
CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.2.
J. R. Goldman, The Queen of Mathematics, 1998, p. 70.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445 [math.NT], 2016.
H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly, 113 (No. 1, 2006), 57-62. [JSTOR] and arXiv:math/0601660 [math.NT], 2006.
Francesco Dolce and Pierre-Adrien Tahay, Column representation of Sturmian words in cellular automata, Czech Technical University (Prague, Czechia, 2022).
Sophie Morier-Genoud and Valentin Ovsienko, On q-deformed real numbers, arXiv:1908.04365 [math.QA], 2019.
C. D. Olds, The simple continued fraction expansion of e, Am. Math. Monthly 77 (9) (1970) 968-974.
T. J. Osler, A proof of the continued fraction expansion of e^(1/M), Amer. Math. Monthly, 113 (No. 1, 2006), 62-66.
Oskar Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, Leipzig, 1929, p. 134.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Ward. O. Whitt, Weirdness in CTMC's, Notes for Course IEOR 6711: Stochastic Models I, [PDF], 2012. - From N. J. A. Sloane, Jan 03 2013
Eric Weisstein's World of Mathematics, e Continued Fraction
Gang Xiao, Contfrac
FORMULA
From Paul Barry, Jun 27 2006: (Start)
G.f.: (2 + x + 2*x^2 - 3*x^3 - x^4 + x^6)/(1 - 2*x^3 + x^6).
a(n) = 0^n + Sum{k = 0..n} 2*sin(2*Pi*(k - 1)/3)*floor((2*k - 1)/3)/sqrt(3). [Corrected and simplified by Jianing Song, Jan 05 2019] (End)
a(n) = 2*a(n-3) - a(n-6), n >= 7. - Philippe Deléham, Feb 10 2009
G.f.: 1 + U(0) where U(k)= 1 + x/(1 - x*(2*k + 1)/(1 + x*(2*k + 1) - 1/((2*k + 1) + 1 - (2*k + 1)*x/(x + 1/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Oct 07 2012
a(3*n-1) = 2*n, a(0) = 2, a(n) = 1 otherwise (i.e., for n+1 > 1, not a multiple of 3). - M. F. Hasler, May 01 2013
E.g.f.: First derivative of (2/9)*exp(x)*(x + 3) + (2/9)*exp(-x/2)*(2*x*cos((sqrt(3)/2)*x+2*Pi/3) - 3*cos((sqrt(3)/2)*x)) + x. - Jianing Song, Jan 05 2019
a(n) = floor(1/(n+1))-(floor(n/3)-floor((n+1)/3))*(2*n-1)/3+1. - Aaron J Grech, Sep 06 2024
EXAMPLE
2.718281828459... = 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + ...))))
MAPLE
numtheory[cfrac](exp(1), 100, 'quotients'); # Jani Melik, May 25 2006
A003417:=(2+z+2*z**2-3*z**3-z**4+z**6)/(z-1)**2/(z**2+z+1)**2; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
ContinuedFraction[E, 100] (* Stefan Steinerberger, Apr 07 2006 *)
a[n_] := KroneckerDelta[1, n] + 2 n/3 - (2 n - 3)/3 DirichletCharacter[3, 1, n]; Table[a[n], {n, 1, 20}] (* Enrique Pérez Herrero, Feb 23 2013 *)
Table[Piecewise[{{2, n == 0}, {2 (n + 1)/3, Mod[n, 3] == 2}}, 1], {n, 0, 120}] (* Eric W. Weisstein, Jan 05 2019 *)
Join[{2}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 2, 1, 1, 4, 1}, 120]] (* Eric W. Weisstein, Jan 05 2019 *)
Join[{2}, Table[(2 (n + 4) + (1 - 2 n) Cos[2 n Pi/3] + Sqrt[3] (1 - 2 n) Sin[2 n Pi/3])/9, {n, 120}]] (* Eric W. Weisstein, Jan 05 2019 *)
Join[{2}, Flatten[Table[{1, 2n, 1}, {n, 40}]]] (* Harvey P. Dale, Jan 21 2020 *)
PROG
(PARI) contfrac(exp(1)) \\ Alexander R. Povolotsky, Feb 23 2008
(PARI) { allocatemem(932245000); default(realprecision, 25000); x=contfrac(exp(1)); for (n=1, 10000, write("b003417.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 14 2009
(PARI) A003417(n)=if(n%3<>2, 1+(n==0), (n+1)/3*2) \\ M. F. Hasler, May 01 2013
(Scala) def eContFracTrio(n: Int): List[Int] = List(1, 2 * n, 1)
2 +: ((1 to 40).map(eContFracTrio).flatten) // Alonso del Arte, Nov 22 2020, with thanks to Harvey P. Dale
(Python)
def A003417(n): return 2 if n == 0 else 1 if n % 3 != 2 else (n+1)//3<<1 # Chai Wah Wu, Jul 27 2022
CROSSREFS
KEYWORD
nonn,cofr,nice,easy
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 07 2024
STATUS
approved
Simple continued fraction of 2*e.
+10
4
5, 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, 1, 3, 8, 3, 1, 8, 1, 3, 10, 3, 1, 10, 1, 3, 12, 3, 1, 12, 1, 3, 14, 3, 1, 14, 1, 3, 16, 3, 1, 16, 1, 3, 18, 3, 1, 18, 1, 3, 20, 3, 1, 20, 1, 3, 22, 3, 1, 22, 1, 3, 24, 3, 1, 24, 1, 3, 26, 3, 1, 26, 1, 3, 28, 3, 1, 28, 1, 3, 30, 3, 1, 30, 1, 3, 32
OFFSET
1,1
COMMENTS
Decimal expansion is A019762. - Michael Somos, May 07 2012
FORMULA
First 5 terms are 5, 2, 3, 2, 3.
For k >= 1, a(6k)=1; a(6k+1)=2k; a(6k+2)=1; a(6k+3)=3; a(6k+4)=2k+2; a(6k+5)=3.
EXAMPLE
2*e = 5 + 1 / (2 + 1 / (3 + 1 / (2 + 1 / (3 + 1 / (1 + ...))))). - Michael Somos, May 07 2012
MATHEMATICA
ContinuedFraction[ 2E, 94] (* Robert G. Wilson v, May 07 2012 *)
PROG
(PARI) A081750(n) = if(1==n, 5, if(n<6, 2+(n%2), my(k=n\6, r=n%6); if(0==r || 2==r, 1, if(1==r, 2*k, if(n%2, 3, 2*(k+1)))))); \\ Antti Karttunen, Feb 20 2023
CROSSREFS
KEYWORD
cofr,easy,nonn
AUTHOR
Benoit Cloitre, Apr 08 2003
STATUS
approved
Decimal expansion of e/3.
+10
3
9, 0, 6, 0, 9, 3, 9, 4, 2, 8, 1, 9, 6, 8, 1, 7, 4, 5, 1, 2, 0, 0, 9, 5, 8, 2, 3, 7, 8, 4, 2, 2, 0, 8, 3, 2, 5, 8, 5, 7, 4, 9, 0, 3, 1, 2, 3, 3, 3, 1, 9, 8, 5, 8, 3, 2, 2, 3, 2, 2, 5, 4, 2, 5, 7, 4, 6, 9, 2, 2, 1, 0, 1, 1, 7, 8, 4, 9, 1, 9, 8, 1, 9, 0, 4, 6, 0, 7, 2, 6, 1, 7, 5, 0, 5, 5, 4, 7, 5
OFFSET
0,1
LINKS
EXAMPLE
0.906093942819681745120095823784220832585749031233319858322322542574692... - Harry J. Smith, May 12 2009
MATHEMATICA
RealDigits[E/3, 10, 120][[1]] (* Harvey P. Dale, Oct 12 2014 *)
PROG
(PARI) { default(realprecision, 20080); x=10*exp(1)/3; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b019740.txt", n, " ", d)); } \\ Harry J. Smith, May 12 2009
CROSSREFS
Cf. A006084 = Continued fraction. - Harry J. Smith, May 12 2009
KEYWORD
nonn,cons
EXTENSIONS
Fixed my PARI program, had -n, by Harry J. Smith, May 19 2009
STATUS
approved
Continued fraction for e/5.
+10
2
0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2, 3, 3, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 9, 1, 3, 3, 3, 4, 3, 3, 4, 1, 2, 2, 1, 4, 1, 2, 2, 1, 5, 9, 1, 5, 3, 3, 6, 3, 3, 6, 1, 2, 2, 1, 6, 1, 2, 2, 1, 7, 9, 1, 7, 3, 3, 8, 3, 3, 8, 1, 2, 2, 1, 8, 1, 2, 2, 1, 9, 9, 1, 9, 3, 3, 10, 3, 3, 10, 1, 2, 2, 1, 10, 1, 2
OFFSET
1,4
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
First 18 terms: 0, 1, 1, 5, 4, 2, 2, 2, 2, 2, 1, 1, 9, 1, 1, 3, 3, 2.
For k >= 1, a(19k)=a(19k+1)=a(19k+16)=a(19k+17)=3; a(19k+2)=a(19k+7)=2k; a(19k+3)=a(19k+6)=a(19k+8)=a(19k+11)=a(19k+14)=1; a(19k+4)=a(19k+5)=a(19k+9)= a(19k+10)=2; a(19k+12)=a(19k+15)=2k+1; a(19k+18)=2k+2.
MATHEMATICA
ContinuedFraction[E/5, 100] (* Paolo Xausa, Sep 21 2024 *)
PROG
(PARI) contfrac(exp(1)/5) \\ Michel Marcus, Dec 03 2013
CROSSREFS
Cf. A019762 (decimal expansion).
Cf. A003417 (e), A006083 (e/2), A006084 (e/3), A006085 (e/4).
KEYWORD
nonn,cofr,easy
AUTHOR
Benoit Cloitre, Apr 08 2003
STATUS
approved

Search completed in 0.007 seconds