[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a005344 -id:a005344
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = solution to the postage stamp problem with n denominations and 2 stamps.
(Formerly M1089 N0972)
+10
28
2, 4, 8, 12, 16, 20, 26, 32, 40, 46, 54, 64, 72, 80, 92, 104, 116, 128, 140, 152, 164, 180, 196, 212
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
a(20)=152: There is only one set of 20 denominations covering all sums through 152: {1, 3, 4, 5, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 71, 72, 73, 75, 76}. - Tim Peters (tim.one(AT)comcast.net), Oct 04 2006
REFERENCES
Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 115 (Coins of the Realm), 1984.
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3.
Erich Friedman, Postage stamp problem
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
F. H. Kierstead, Jr.,, The Stamp Problem, J. Rec. Math., Vol. ?, Year ?, page 298. [Annotated and scanned copy]
J. Kohonen, J. Corander, Addition Chains Meet Postage Stamps: Reducing the Number of Multiplications, J. Integer Seq., 17 (2014), Article 14.3.4.
J. Kohonen, Early Pruning in the Restricted Postage Stamp Problem, arXiv preprint arXiv:1503.03416, 2015
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
W. F. Lunnon, A postage stamp problem [Annotated scanned copy]
J. P. Robinson, Some postage stamp 2-bases, JIS 12 (2009) 09.1.1.
Eric Weisstein's World of Mathematics, Postage stamp problem
Mingjia Yang, An experimental walk in patterns, partitions, and words, Ph. D. Dissertation, Rutgers University (2020).
CROSSREFS
Equals A196094(n) - 1 and A234941(n+1)-2.
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn,nice,more
EXTENSIONS
Corrected a(17). Added a(18) and a(19) from Challis. - R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(20) from Tim Peters (tim.one(AT)comcast.net), Oct 04 2006
Added terms a(21) and a(22) from Challis and Robinson. John P Robinson (john-robinson(AT)uiowa.edu), Feb 19 2010
Added term a(23) from Challis and Robinson's July 2013 addendum, by Jukka Kohonen, Oct 25 2013
Added a(24) from Kohonen and Corander (2013). - N. J. A. Sloane, Jan 08 2014
STATUS
approved
a(n) is the solution to the postage stamp problem with 4 denominations and n stamps.
(Formerly M3432 N1568)
+10
24
4, 12, 24, 44, 71, 114, 165, 234, 326, 427, 547, 708, 873, 1094, 1383, 1650, 1935, 2304, 2782, 3324, 3812, 4368, 5130, 5892, 6745, 7880, 8913, 9919, 11081, 12376, 13932, 15657, 17242, 18892, 21061, 23445, 25553, 27978, 31347, 33981, 36806, 39914, 43592
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
Challis lists up to a(54) and provides recursions up to a(157). - R. J. Mathar, Apr 01 2006
Additional terms a(29) through a(254) can be computed using 3 sets of equations and a table of 10 coefficients available on line at Challis and Robinson. - John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3.
Erich Friedman, Postage stamp problem
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582.
Eric Weisstein's World of Mathematics, Postage stamp problem
CROSSREFS
Equals A196069 - 1.
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn
EXTENSIONS
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(15) to a(28) from Table 1 of Mossige reference added by R. J. Mathar, Mar 29 2006
a(29)-a(54) from Challis and Robinson added by Robert Price, Jul 19 2013
STATUS
approved
a(n) = solution to the postage stamp problem with 3 denominations and n stamps.
(Formerly M2721 N1351)
+10
21
3, 8, 15, 26, 35, 52, 69, 89, 112, 146, 172, 212, 259, 302, 354, 418, 476, 548, 633, 714, 805, 902, 1012, 1127, 1254, 1382, 1524, 1678, 1841, 2010, 2188, 2382, 2584, 2801, 3020, 3256, 3508, 3772, 4043, 4326, 4628, 4941, 5272, 5606, 5960, 6334, 6723, 7120
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126.
Erich Friedman, Postage stamp problem
F. H. Kierstead, Jr.,, The Stamp Problem, J. Rec. Math., Vol. ?, Year ?, page 298. [Annotated and scanned copy]
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
Eric Weisstein's World of Mathematics, Postage stamp problem
MAPLE
c2 :=array(0..8, [3, 3, 5, 5, 7, 6, 8, 8, 10]) ; c3 :=array(0..8, 1..2, [[1, 1], [1, 1], [2, 1], [2, 1], [3, 1], [2, 2], [3, 2], [3, 2], [4, 2]]); c4 :=array(0..8, 1..3, [[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 2], [2, 0, 2], [2, 1, 2], [3, 1, 2], [3, 1, 3], [4, 1, 3]]) ; for n from 23 to 100 do r := n mod 9 ; t := iquo(n, 9) ; a2 := 6*t+c2[r] ; a3 := (2*t+c3[r, 1])+(2*t+c3[r, 2])*a2 ; printf("%a, ", 4*t+c4[r, 1]+(2*t+c4[r, 2])*a2+(3*t+c4[r, 3])*a3) ; end: # R. J. Mathar, Apr 01 2006
MATHEMATICA
ClearAll[c2, c3, c4, a]; Evaluate[ Array[c2, 9, 0]] = {3, 3, 5, 5, 7, 6, 8, 8, 10}; Evaluate[ Array[c3, {9, 2}, {0, 1}]] = {{1, 1}, {1, 1}, {2, 1}, {2, 1}, {3, 1}, {2, 2}, {3, 2}, {3, 2}, {4, 2}}; Evaluate[ Array[c4, {9, 3}, {0, 1}]] = {{0, 0, 0}, {0, 0, 1}, {1, 0, 1}, {1, 0, 2}, {2, 0, 2}, {2, 1, 2}, {3, 1, 2}, {3, 1, 3}, {4, 1, 3}}; Evaluate[ Array[a, 19]] = {3, 8, 15, 26, 35, 52, 69, 89, 112, 146, 172, 212, 259, 302, 354, 418, 476, 548, 633}; a[n_] := (r = Mod[n, 9]; t = Quotient[n, 9]; a2 = 6t + c2[r]; a3 = (2t + c3[r, 1]) + (2t + c3[r, 2])*a2; 4t + c4[r, 1] + (2t + c4[r, 2])*a2 + (3t + c4[r, 3])*a3); Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 19 2011, after R. J. Mathar's Maple program *)
CROSSREFS
Equals A195618 - 1.
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn,nice
EXTENSIONS
Maple recursion program valid for n>=23 from Challis added by R. J. Mathar, Apr 01 2006
At least 64 terms are known, see Friedman link.
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006
STATUS
approved
a(n) is the solution to the postage stamp problem with n denominations and 3 stamps.
(Formerly M2647 N1340)
+10
21
3, 7, 15, 24, 36, 52, 70, 93, 121, 154, 186, 225, 271, 323, 385, 450, 515, 606, 684, 788, 865, 977, 1091, 1201, 1361
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
Erich Friedman, Postage stamp problem
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
Eric Weisstein's World of Mathematics, Postage stamp problem
CROSSREFS
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn,more
EXTENSIONS
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from Al Zimmermann, Feb 20 2002
Further terms from Friedman web site, Jun 20 2003
Incorrect value of a(17) removed by Al Zimmermann, Nov 08 2009
a(17)-a(25) from Friedman added by Robert Price, Jul 19 2013
STATUS
approved
a(n) is the solution to the postage stamp problem with 5 denominations and n stamps.
(Formerly M3864 N1707)
+10
20
5, 16, 36, 70, 126, 216, 345, 512, 797, 1055, 1475, 2047, 2659, 3403, 4422, 5629, 6865, 8669, 10835, 12903, 15785, 18801, 22456, 26469, 31108, 36949, 42744, 49436, 57033, 66771, 75558, 86303, 96852, 110253, 123954, 140688, 158389, 178811, 197293, 223580
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
Additional terms a(30) through a(67) are available on line at Challis and Robinson. - John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126.
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010]
Erich Friedman, Postage stamp problem
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
Eric Weisstein's World of Mathematics, Postage stamp problem
CROSSREFS
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn
EXTENSIONS
Terms up to a(29) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(30)-a(67) from Challis and Robinson added by Robert Price, Jul 19 2013
STATUS
approved
a(n) is the solution to the postage stamp problem with 6 denominations and n stamps.
(Formerly M4136 N1836)
+10
20
6, 20, 52, 108, 211, 388, 664, 1045, 1617, 2510, 3607, 5118, 7066, 9748, 12793, 17061, 22342, 28874, 36560, 45745, 57814, 72997, 87555, 106888, 129783
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126.
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3.
Erich Friedman, Postage stamp problem
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
Eric Weisstein's World of Mathematics, Postage stamp problem
CROSSREFS
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn,more
EXTENSIONS
a(11)-a(15) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(16)-a(25) from Challis and Robinson added by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
STATUS
approved
a(n) is the solution to the postage stamp problem with n denominations and 4 stamps.
(Formerly M3391 N1559)
+10
20
4, 10, 26, 44, 70, 108, 162, 228, 310, 422, 550, 700, 878, 1079, 1344, 1606, 1944, 2337, 2766, 3195, 3668, 4251, 4923, 5631, 6429
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010]
Erich Friedman, Postage stamp problem
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
CROSSREFS
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn,more
EXTENSIONS
a(10) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(11) from Challis & Robinson added by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
a(12)-a(25) from Friedman added by Robert Price, Jul 19 2013
STATUS
approved
a(n) is the solution to the postage stamp problem with n denominations and 5 stamps.
(Formerly M3845 N1706)
+10
20
5, 14, 35, 71, 126, 211, 336, 524, 726, 1016, 1393, 1871, 2494, 3196, 4063, 5113, 6511, 7949, 9865, 11589
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3.
Erich Friedman, Postage stamp problem
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
CROSSREFS
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn,more
EXTENSIONS
a(9) from Challis added by R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(10) from Challis and Robinson added by John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
a(11)-a(20) from Friedman added by Robert Price, Jul 19 2013
STATUS
approved
a(n) = solution to the postage stamp problem with n denominations and 6 stamps.
(Formerly M4120 N1831)
+10
20
6, 18, 52, 114, 216, 388, 638, 1007, 1545, 2287
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010]
Erich Friedman, Postage stamp problem
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
CROSSREFS
A row or column of the array A196416 (possibly with 1 subtracted from it).
KEYWORD
nonn,more
EXTENSIONS
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
Added terms a(8) and a(9) from Challis and Robinson. John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010
a(10) from Friedman by Robert Price, Jul 19 2013
STATUS
approved
a(n) = solution to the postage stamp problem with n denominations and 7 stamps.
(Formerly M4380)
+10
19
7, 23, 69, 165, 345, 664, 1137, 1911
OFFSET
1,1
COMMENTS
Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
Erich Friedman, Postage stamp problem
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382-404.
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(8) from Challis and Robinson by Robert Price, Jul 19 2013
STATUS
approved

Search completed in 0.030 seconds