reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
a(4*n) = 9^n for n > = 0.
a(4*n) = 9^n for n > 0.
a(n) = Sum_{k=0..floor(n/4)} 8^k * binomial(n/4,k).
a(n) == 1 (mod 2).
1, 1, 1, 1, 9, 11, 13, 15, 81, 109, 141, 177, 729, 1041, 1429, 1901, 6561, 9759, 13981, 19419, 59049, 90483, 133893, 192327, 531441, 832911, 1264173, 1865539, 4782969, 7628799, 11816853, 17828163, 43046721, 69620541, 109646397, 168500385, 387420489, 633634769
Cf. A373509.
allocated for Seiichi Manyama
Expansion of 1 / ( (1 - 8*x^4) * (1 - x/(1 - 8*x^4)^(1/4)) ).
1, 1, 1, 1, 9, 11, 13, 15, 81, 109, 141, 177, 729, 1041, 1429, 1901, 6561, 9759, 13981, 19419, 59049, 90483, 133893, 192327
0,5
allocated
nonn
Seiichi Manyama, Jun 11 2024
approved
editing
allocated for Seiichi Manyama
allocated
approved