editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
SPECIAL VALUES.
(V.1) Let A = A(exp(-Pi)) = 0.05266628449954901094912490050067062239110765179054552678...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 4*A)^n = 3*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.74073741446835046422172...
(V.2) Let A = A(exp(-2*Pi)) = 0.001881517053093894919707587041659521876650213322334450878...
then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 4*A)^n = 3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.988795343682721407369...
(V.3) Let A = A(-exp(-Pi)) = -0.03699687105031477666227946508842289849689211763245984347...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 4*A)^n = 3*Pi^(1/4)/gamma(3/4) - 2 = 1.259304433639924043725...
(V.4) Let A = A(-exp(-2*Pi)) = -0.0018536159060139689998658447922411419770684746756327600438...
then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 4*A)^n = 3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 2 = 1.011204656463217273143...
approved
editing
Paul D. Hanna, <a href="/A370024/b370024_1.txt">Table of n, a(n) for n = 1..401</a>
reviewed
approved
proposed
reviewed
editing
proposed
Paul D. Hanna, <a href="/A370024/b370024_1.txt">Table of n, a(n) for n = 1..401</a>
allocated for Paul D. Hanna
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
1, 4, 19, 99, 529, 2853, 15566, 85879, 477716, 2674070, 15047671, 85063429, 482733230, 2748703604, 15697194139, 89875431754, 515774659357, 2966016776556, 17088046518051, 98614323921685, 569967829487533, 3298876334401503, 19117753534875276, 110922240116613681, 644276475406441599
1,2
A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 4*A(x))^(n-1) = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 4*A(x))^n = 0.
(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^n)^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^n)^(n+1) = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 4*A(x)*x^n)^(n+1) = 0.
G.f.: A(x) = x + 4*x^2 + 19*x^3 + 99*x^4 + 529*x^5 + 2853*x^6 + 15566*x^7 + 85879*x^8 + 477716*x^9 + 2674070*x^10 + 15047671*x^11 + 85063429*x^12 + ...
where
Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 - 6*x + 6*x^4 - 6*x^9 + 6*x^16 - 6*x^25 + 6*x^36 - 6*x^49 +- ...
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, (-1)^m * (x^m + 4*Ser(A))^m ) - 1 - 6*sum(m=1, #A, (-1)^m * x^(m^2) ), #A-1)/4 ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
allocated
nonn
Paul D. Hanna, Feb 09 2024
approved
editing
allocated for Paul D. Hanna
allocated
approved