[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A370024 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).
(history; published version)
#9 by Paul D. Hanna at Mon Feb 12 19:30:31 EST 2024
STATUS

editing

approved

#8 by Paul D. Hanna at Mon Feb 12 19:30:29 EST 2024
EXAMPLE

SPECIAL VALUES.

(V.1) Let A = A(exp(-Pi)) = 0.05266628449954901094912490050067062239110765179054552678...

then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 4*A)^n = 3*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.74073741446835046422172...

(V.2) Let A = A(exp(-2*Pi)) = 0.001881517053093894919707587041659521876650213322334450878...

then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 4*A)^n = 3*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 2 = 0.988795343682721407369...

(V.3) Let A = A(-exp(-Pi)) = -0.03699687105031477666227946508842289849689211763245984347...

then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 4*A)^n = 3*Pi^(1/4)/gamma(3/4) - 2 = 1.259304433639924043725...

(V.4) Let A = A(-exp(-2*Pi)) = -0.0018536159060139689998658447922411419770684746756327600438...

then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 4*A)^n = 3*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 2 = 1.011204656463217273143...

STATUS

approved

editing

#7 by OEIS Server at Sat Feb 10 12:35:24 EST 2024
LINKS

Paul D. Hanna, <a href="/A370024/b370024_1.txt">Table of n, a(n) for n = 1..401</a>

#6 by Michael De Vlieger at Sat Feb 10 12:35:24 EST 2024
STATUS

reviewed

approved

Discussion
Sat Feb 10
12:35
OEIS Server: Installed first b-file as b370024.txt.
#5 by Joerg Arndt at Sat Feb 10 11:31:28 EST 2024
STATUS

proposed

reviewed

#4 by Paul D. Hanna at Fri Feb 09 01:13:54 EST 2024
STATUS

editing

proposed

#3 by Paul D. Hanna at Fri Feb 09 00:17:37 EST 2024
LINKS

Paul D. Hanna, <a href="/A370024/b370024_1.txt">Table of n, a(n) for n = 1..401</a>

#2 by Paul D. Hanna at Fri Feb 09 00:08:59 EST 2024
NAME

allocated for Paul D. Hanna

Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).

DATA

1, 4, 19, 99, 529, 2853, 15566, 85879, 477716, 2674070, 15047671, 85063429, 482733230, 2748703604, 15697194139, 89875431754, 515774659357, 2966016776556, 17088046518051, 98614323921685, 569967829487533, 3298876334401503, 19117753534875276, 110922240116613681, 644276475406441599

OFFSET

1,2

COMMENTS

A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).

LINKS

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

FORMULA

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

(1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).

(2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 4*A(x))^(n-1) = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).

(3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 4*A(x))^n = 0.

(4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^n)^n = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).

(5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 4*A(x)*x^n)^(n+1) = 1 + 6*Sum_{n>=1} (-1)^n * x^(n^2).

(6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 4*A(x)*x^n)^(n+1) = 0.

EXAMPLE

G.f.: A(x) = x + 4*x^2 + 19*x^3 + 99*x^4 + 529*x^5 + 2853*x^6 + 15566*x^7 + 85879*x^8 + 477716*x^9 + 2674070*x^10 + 15047671*x^11 + 85063429*x^12 + ...

where

Sum_{n=-oo..+oo} (-1)^n * (x^n + 4*A(x))^n = 1 - 6*x + 6*x^4 - 6*x^9 + 6*x^16 - 6*x^25 + 6*x^36 - 6*x^49 +- ...

PROG

(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);

A[#A] = polcoeff( sum(m=-#A, #A, (-1)^m * (x^m + 4*Ser(A))^m ) - 1 - 6*sum(m=1, #A, (-1)^m * x^(m^2) ), #A-1)/4 ); A[n+1]}

for(n=1, 30, print1(a(n), ", "))

KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Feb 09 2024

STATUS

approved

editing

#1 by Paul D. Hanna at Wed Feb 07 21:08:31 EST 2024
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved