proposed
approved
proposed
approved
editing
proposed
def iterfun(f, n=0):
return m
return m def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
return a+iterfun(lambda x:f(x)+2, b)-(b<<1) # Chai Wah Wu, Oct 02 2024
(Python)
from math import isqrt
from sympy import mobius
def A376590(n):
def iterfun(f, n=0):
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
a = iterfun(f, n)
b = iterfun(lambda x:f(x)+1, a)
return a+iterfun(lambda x:f(x)+2, b)-(b<<1) # Chai Wah Wu, Oct 02 2024
approved
editing
proposed
approved
editing
proposed
Zeros are A376591, non-zeros complement A376592.
`A001597 lists perfect-powers, complement A007916.
A005117 lists squarefree numbers, complement A013929 (differences A076259A078147).
A013929 lists nonsquarefree numbers, differences A078147.
`A053707 gives first differences of consecutive nonprime prime-powers.
`A064113 lists positions of adjacent equal prime gaps.
A112344 A073576 counts integer partitions into perfect-powers, squarefree numbers, factorizations A294068A050320.
`A246655 lists prime-powers exclusive, inclusive A000961.
Cf. A000961, A007674, A053797, A053806, A061398, A072284, A112925, A112926, A120992, `A174965, A182853, A251092, A373197, A373198, A375707, A376342.
A007916 `A001597 lists non-perfect-powers, complement A007916.
A005117 lists squarefree numbers, differences A076259.
`A053707 gives first differences of consecutive nonprime prime -powers.
`A064113 lists positions of adjacent equal prime gaps.
A112344 counts integer partitions into perfect-powers, factorizations A294068.
`A246655 lists prime-powers exclusive, inclusive A000961.
A336417 counts perfect-power divisors of A006939.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree numbers: A005117 (terms), A076259 (first differences), A376590 (second differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions).
Cf. `A025475, `A069623, `A258025, `A258026.
Cf. A007674, A053797, A053806, A061398, A072284, A112925, A112926, A120992, `A174965, A182853, A251092, `A375702, `A376308A373197, A373198, A375707, A376342.
Cf. A007674, A053797, `A053806, A061398, A072284, A112925, A112926, A120992, A373197, A373198, A375707, `A376312, `A376342.
Cf. A007674 max_antrun_sqf, , A053797 nonsqf_runlens, , `A053806 min_nonsqf_run, , A061398 num_sqf_btwn_pri, , A072284 min_run_sqf, , A112925 max_sqf_less_pri, , A112926 min_sqf_grtr_pri, , A120992 sqf_runlens, , A373197 sqfsum_btwn_pri, , A373198 sqflen_btwn_pri, , A375707 sqf_btwn_nonsqf, , `A376312 nonsqf_diffs_compress, , `A376342 sqf_diffs_compress_pos1.
0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 3, -2, 0, 0, -1, 0, 1, -1, 2, -2, 0, 1, -1, 0, 1, -1, 2, -2, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 1, 2, -3, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 2, -2, 2, -2, 3, -2, -1
1,5
The squarefree numbers (A005117) are:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
Differences[Select[Range[100], SquareFreeQ], 2]
The version for A000002 is A376604, first differences of A054354.
The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
Zeros are A376591, non-zeros A376592.
Sorted positions of first appearances are A376655.
A000040 lists the prime numbers, differences A001223.
A007916 lists non-perfect-powers.
A013929 lists nonsquarefree numbers, differences A078147.
A053707 gives first differences of consecutive nonprime prime powers.
A064113 lists positions of adjacent equal prime gaps.
A112344 counts partitions into perfect-powers, factorizations A294068.
A246655 lists prime-powers exclusive, inclusive A000961.
A333254 lists run-lengths of differences between consecutive primes.
A336417 counts perfect-power divisors of A006939.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree numbers: A005117 (terms), A076259 (first differences), A376590 (second differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions).
Cf. `A025475, `A069623, `A258025, `A258026.
Cf. `A174965, A182853, A251092, `A375702, `A376308.
Cf. A007674 max_antrun_sqf, A053797 nonsqf_runlens, A053806 min_nonsqf_run, A061398 num_sqf_btwn_pri, A072284 min_run_sqf, A112925 max_sqf_less_pri, A112926 min_sqf_grtr_pri, A120992 sqf_runlens, A373197 sqfsum_btwn_pri, A373198 sqflen_btwn_pri, A375707 sqf_btwn_nonsqf, A376312 nonsqf_diffs_compress, A376342 sqf_diffs_compress_pos1.
allocated
sign
Gus Wiseman, Oct 01 2024
approved
editing