[go: up one dir, main page]

login
Revision History for A367473 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^3.
(history; published version)
#10 by Michael De Vlieger at Sun Nov 19 08:24:58 EST 2023
STATUS

proposed

approved

#9 by Seiichi Manyama at Sun Nov 19 08:02:42 EST 2023
STATUS

editing

proposed

#8 by Seiichi Manyama at Sun Nov 19 06:37:58 EST 2023
DATA

1, 9, 117, 1953, 39645, 946089, 25926597, 801869553, 27618402285, 1048096422009, 43444114011477, 1952712851250753, 94592798546953725, 4912513525545837129, 272265236648295312357, 16039329591716508497553, 1000809252891040145821965

#7 by Seiichi Manyama at Sun Nov 19 06:37:26 EST 2023
PROG

(PARI) a(n) = sum(k=0, n, 3^k*(k+2)!*stirling(n, k, 2))/2;

#6 by Seiichi Manyama at Sun Nov 19 05:33:04 EST 2023
CROSSREFS
#5 by Seiichi Manyama at Sun Nov 19 05:32:23 EST 2023
FORMULA

a(0) = 1; a(n) = 3*Sum_{k=1..n} (2 * k/n + 1) * binomial(n,k) * a(n-k).

#4 by Seiichi Manyama at Sun Nov 19 05:30:43 EST 2023
FORMULA

a(n) = (1/2) * Sum_{k=0..n} 3^k * (k+2)! * Stirling2(n,k).

a(0) = 1; a(n) = 3*Sum_{k=1..n} (2 * k/n + 1) * binomial(n,k) * a(n-k).

a(0) = 1; a(n) = 9*a(n-1) - 4*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k).

#3 by Seiichi Manyama at Sun Nov 19 05:27:40 EST 2023
CROSSREFS
#2 by Seiichi Manyama at Sun Nov 19 05:26:39 EST 2023
NAME

allocated for Seiichi Manyama

Expansion of e.g.f. 1 / (4 - 3 * exp(x))^3.

DATA

1, 9, 117, 1953, 39645, 946089, 25926597, 801869553, 27618402285, 1048096422009, 43444114011477, 1952712851250753, 94592798546953725, 4912513525545837129, 272265236648295312357, 16039329591716508497553

OFFSET

0,2

KEYWORD

allocated

nonn

AUTHOR

Seiichi Manyama, Nov 19 2023

STATUS

approved

editing

#1 by Seiichi Manyama at Sun Nov 19 05:26:39 EST 2023
NAME

allocated for Seiichi Manyama

KEYWORD

allocated

STATUS

approved