Paul D. Hanna, <a href="/A341963/b341963_1.txt">Table of n, a(n) for n = 0..520</a>
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
Paul D. Hanna, <a href="/A341963/b341963_1.txt">Table of n, a(n) for n = 0..520</a>
editing
approved
Paul D. Hanna, <a href="/A341963/b341963_1.txt">Table of n, a(n) for n = 0..520</a>
approved
editing
editing
approved
a(n) ~ sqrt(s*(3 - 14*r*s + 15*r^2*s^2) / (Pi*(11 - 15*r*s))) / (2*n^(3/2)*r^(n + 1/2)), where r = 0.07627811703169412709742160523783922642030319519275992338... and s = 1.9374927720056356430894528816479641920545157312336620520408... are positive real roots of the system of equations (-1 + r*s)*(-1 + 2*r*s)/(1 - 3*r*s)^2 = s, -1 + 27*r^3*s^3 + r*(3 + 9*s) - r^2*s*(5 + 27*s) = 0. - Vaclav Kotesovec, Mar 02 2021
CoefficientList[1/x * InverseSeries[Series[x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Mar 02 2021 *)
approved
editing
editing
approved
AB(x)*BC(x) = D(x) + x*D(x)^2 = 1 + 97*x + 8359*x^2 + 810550*x^3 + 82705462*x^4 + 8738156651*x^5 + 947983606487*x^6 + 105009306651406*x^7 + 11828857474345054*x^8 + ...
BA(x)*CB(x) = D(x) + 3*x*D(x)^2 = 1 + 79*x + 5983*x^2 + 550810*x^3 + 54628270*x^4 + 5665187381*x^5 + 606487947983*x^6 + 665140610500930*x^7 + 74345054118288574*x^8 + ...
approved
editing
editing
approved
{c(n) = my(A C = 1/x*serreverse( x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x) +x*O(x^n)))); polcoeff(A, C, n)}
approved
editing