[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A341963 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f. C(x) satisfies: C(x) = (1 - x*C(x))*(1 - 2*x*C(x)) / (1 - 3*x*C(x))^2.
(history; published version)
#16 by OEIS Server at Mon Jul 15 06:11:19 EDT 2024
LINKS

Paul D. Hanna, <a href="/A341963/b341963_1.txt">Table of n, a(n) for n = 0..520</a>

#15 by Paul D. Hanna at Mon Jul 15 06:11:19 EDT 2024
STATUS

editing

approved

Discussion
Mon Jul 15
06:11
OEIS Server: Installed first b-file as b341963.txt.
#14 by Paul D. Hanna at Mon Jul 15 06:11:16 EDT 2024
LINKS

Paul D. Hanna, <a href="/A341963/b341963_1.txt">Table of n, a(n) for n = 0..520</a>

STATUS

approved

editing

#13 by Vaclav Kotesovec at Tue Mar 02 03:17:21 EST 2021
STATUS

editing

approved

#12 by Vaclav Kotesovec at Tue Mar 02 03:16:44 EST 2021
FORMULA

a(n) ~ sqrt(s*(3 - 14*r*s + 15*r^2*s^2) / (Pi*(11 - 15*r*s))) / (2*n^(3/2)*r^(n + 1/2)), where r = 0.07627811703169412709742160523783922642030319519275992338... and s = 1.9374927720056356430894528816479641920545157312336620520408... are positive real roots of the system of equations (-1 + r*s)*(-1 + 2*r*s)/(1 - 3*r*s)^2 = s, -1 + 27*r^3*s^3 + r*(3 + 9*s) - r^2*s*(5 + 27*s) = 0. - Vaclav Kotesovec, Mar 02 2021

#11 by Vaclav Kotesovec at Tue Mar 02 02:19:40 EST 2021
MATHEMATICA

CoefficientList[1/x * InverseSeries[Series[x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x)), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Mar 02 2021 *)

STATUS

approved

editing

#10 by Paul D. Hanna at Mon Mar 01 13:24:25 EST 2021
STATUS

editing

approved

#9 by Paul D. Hanna at Mon Mar 01 13:24:22 EST 2021
EXAMPLE

AB(x)*BC(x) = D(x) + x*D(x)^2 = 1 + 97*x + 8359*x^2 + 810550*x^3 + 82705462*x^4 + 8738156651*x^5 + 947983606487*x^6 + 105009306651406*x^7 + 11828857474345054*x^8 + ...

BA(x)*CB(x) = D(x) + 3*x*D(x)^2 = 1 + 79*x + 5983*x^2 + 550810*x^3 + 54628270*x^4 + 5665187381*x^5 + 606487947983*x^6 + 665140610500930*x^7 + 74345054118288574*x^8 + ...

STATUS

approved

editing

#8 by Paul D. Hanna at Mon Mar 01 12:17:09 EST 2021
STATUS

editing

approved

#7 by Paul D. Hanna at Mon Mar 01 12:17:07 EST 2021
PROG

{c(n) = my(A C = 1/x*serreverse( x*(1 - 3*x)^2 / ((1 - x)*(1 - 2*x) +x*O(x^n)))); polcoeff(A, C, n)}

STATUS

approved

editing